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Abstract

Chills are a fleeting, pleasurable bodily sensation, sometimes accompanied by

piloerection, experienced when listening to specific musical passages. They are

often used as an indicator of aesthetic and emotional responses to music, because

they are considered to be pleasurable, widespread, memorable, and observable.

However, research on chills suffers from theoretical and practical limitations.

Notably, there are significant shortcomings in the available literature regarding

research design, adequacy of experimental variables, and empirical measures of

chills. This thesis reviews the suitability of using chills in musical aesthetics and

emotion research, and details the construction of several large-scale datasets of

pieces of music that elicit chills, in order to solve ongoing issues of reproducibility,

generalisability, and ecological validity. These datasets are used in a range of

behavioural and computational studies, applying paradigms that address current

gaps in research on chills, and particularly the widely hypothesised role of musical

expectation and associated factors, which lacks any form of direct empirical

verification. More specifically, this thesis presents 1) a systematic review of the

literature on chills in music, 2) a longitudinal study using a combination of self-

reported and objective measures of chills to assess the roles of musical content,

stylistic preference, and familiarity, 3) a corpus analysis investigating conflicting

effects of perceived valence on chills, and 4) a large-scale computational study

modelling the onsets of chills from acoustic and syntactic properties, resulting

in a system with the potential to predict if and when chills might occur in a

piece of music. While chills have often been described as idiosyncratic, this

thesis demonstrates strong associations between chills and expectation, providing

further clarity on competing psychological theories about the origins of chills,

and of music appreciation in general.
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Chapter 1

Introduction

1.1 Empirical aesthetics

Music is a human universal (Mehr et al., 2019; Savage et al., 2015) and is

one of the most commonly reported sources of emotional pleasure (Dubé &

Le Bel, 2003). Yet, despite the prevalence of musical behaviours across cultures,

the nature of the relationship between music, pleasure, and emotion is poorly

understood.

Empirical aesthetics were one of the very first topics of interest in experimen-

tal psychology. Early work by Gustav Fechner, Hermann von Helmholtz, and

Wilhelm Wundt looked into the effect of stimulus complexity (Wundt, 1863),

relationships of musical tones (Helmholtz, 1863), and learned associations (Fech-

ner, 1876) on aesthetic experience, and inspired a long tradition of psychological

research into what elicits pleasurable responses to art (for a review, see Huron,

2016).

One notable contribution to the field comes from Berlyne (1971), who further

investigated the relationship between complexity, arousal and pleasure, leading

to the hypothesis that there exists an inverted-U relationship between hedonic

value and arousal potential, in which arousal is influenced by stimulus properties

such as complexity and familiarity, and pleasure is higher for moderate degrees of

arousal, and lower for both high and low degrees of arousal. This hypothesis has

been extensively tested in various artistic domains, including music, for which

it has received relatively strong (e.g Heyduk, 1975; North & Hargreaves, 1995;

Vitz, 1966), though not unanimous (e.g. Orr & Ohlsson, 2005; Smith & Melara,

1990) empirical support (for reviews, see Chmiel & Schubert, 2017; Hargreaves

& North, 2010; Orr & Ohlsson, 2005).

The methods used in such research have become problematic in a few ways.

First, they distinguish aesthetic judgement from emotional response (Orr &
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Ohlsson, 2005) and place the focus on preference, when more comprehensive

accounts suggest a complex relationship between aesthetic response, emotion, and

liking (Juslin et al., 2010), involving social, emotional, and cognitive components

(Konečni, 1979), and depending on a reciprocal interplay between listener,

context, and music (Gabrielsson, 2001a; Hargreaves, 2012). As a result, while

a focus on the relationship between preference and stimulus properties might

enable convenient experimental approaches, it is unlikely to reflect the broad

nature of affective and aesthetic responses and the psychological mechanisms

that underlie them (Huron, 2016; Juslin, 2016).

Second, research designs in empirical aesthetics have historically relied on

tightly controlled experimental procedures in laboratory environments. While

there are many benefits to this approach, it encourages the use of stimuli which

only approximate music, in short-lived situations which are unlikely to induce

fully fledged emotional and aesthetic responses. Ecological validity often comes

at a cost, but when it comes to empirical aesthetics, it has been recommended

to make use of more naturalistic listening experiences (Hargreaves & North,

2010; Hodges, 2016), in addition to considering the possibility of employing

longitudinal designs to study the development of responses to these experiences

over time (Greasley & Lamont, 2016).

Third, Berlyne’s (1971) and subsequent approaches do not always emphasise

the temporal nature of music, and tend to consider musical stimuli as a whole

instead. Music being a phenomenon that unfolds in time, dynamic fluctuations

in affective and aesthetic responses should be taken into consideration (Huron

& Margulis, 2010; McDermott, 2012). Madsen et al. (1993), for instance, used

continuous self-report methods, and found that the trajectories of aesthetic

ratings are highly consistent within a piece of music for individual listeners,

highlighting the need for the study of the underlying factors at the origin of

these consistent patterns.

Lastly, there remain substantial challenges because of the lack of objective

experimental variables with the potential to capture subjective experiences of

pleasure and emotion. Self-report measures and physiological responses are

traditionally used, but both have disadvantages in terms of susceptibility to

biases, reliability, and specificity (Juslin, 2016; Larsen et al., 2008; Orne, 1962;

Panksepp & Bernatzky, 2002; Zentner & Eerola, 2010).

1.2 Musical expectation

Aesthetic experience depends on many factors. One prominent psychological

phenomenon thought to be particularly relevant to empirical aesthetics is musical

expectation. Research on the topic benefits from a long-standing theoretical
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background initiated by Eduard Hanslick (1854), and reinforced by Leonard

Meyer (1956, 1957) in parallel to the research discussed above on complexity,

arousal, and pleasure.

Musical expectation is based on the hypothesis that developing expectations

follows a process of probabilistic learning of the statistical regularities in musical

structure (Pearce, 2018; Saffran et al., 1999). In other words, with exposure

to a musical culture, listeners automatically and implicitly develop an internal

model of the structure of a musical style through a process called statistical

learning, which is then used, when listening to music, to form expectations about

the possible continuations of the music through a process called probabilistic

prediction (Pearce, 2018). These learned expectations can be violated, delayed,

or confirmed, resulting in induced emotional and aesthetic responses (Cheung

et al., 2019; Egermann et al., 2013; Gold et al., 2019; Huron, 2006; Juslin, 2013;

Sauvé et al., 2018; Steinbeis et al., 2006), possibly in order to drive learning

to improve future predictions or otherwise optimise states of arousal (Pearce,

2018).

Much research has been conducted on the topic of musical expectation.

Behavioural methods have been used to demonstrate effects of melodic, harmonic,

rhythmic or metrical expectation on recognition memory, music production, music

perception, and music transcription (for a review, see Pearce & Wiggins, 2012).

Research using neuroscientific methods has shown that violations of expectations

involve activity in inferior frontal regions, the caudate, and the nucleus (for

reviews, see Salimpoor et al., 2015; Trainor & Zatorre, 2016). Finally, the use of

computational methods has revealed that several modelling approaches can be

used to successfully predict expectations (for a review, see Rohrmeier & Koelsch,

2012).

Naturally, some of the methodological limitations identified with regards to

empirical aesthetics also apply to research on the relationship between expecta-

tion, emotion, and pleasure, which generally consists of gathering self-reports in

response to relatively short (Cheung et al., 2019) and often manipulated (Gold

et al., 2019; Sauvé et al., 2018; Steinbeis et al., 2006) melodic and harmonic

sequences.

1.3 Music-evoked chills

One particular reaction to music, commonly referred to as chills, appears related

to both aesthetics and expectation. There is little agreement on the exact

definition of chills, on their physiological basis, or on their relationship to

emotions. This motivated a systematic review of the literature on chills, presented

in Chapter 2, based on which we define chills for the purpose of the present
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thesis as a fleeting, pleasurable bodily sensation, sometimes accompanied by

goosebumps, experienced when listening to specific musical passages.

Music-evoked chills (MECs) are often considered to be a pleasurable response,

and are thought to be stable, memorable, discrete, and observable, therefore

addressing some of the limitations of self-reports and physiological measures. As

a result, they have emerged as a convenient indicator of emotional and aesthetic

experiences in research on responses to music. However, there is no consensus

on how MECs relate to emotion, aesthetics, and pleasure, which motivates the

need for further study. In fact, as revealed in Chapter 2, we suspect that MECs

are an optional but enhancing component of aesthetic and emotional responses,

which therefore makes them unsuitable as the sole indicator of such responses.

Musical expectation has long been posited as a cause of MECs (L. Harrison

& Loui, 2014; Huron, 2006; Huron & Margulis, 2010; Juslin, 2013; Juslin &

Västfjäll, 2008; McDermott, 2012; Mencke et al., 2019; Pearce & Wiggins, 2012;

Salimpoor et al., 2011; Sloboda, 1991), but empirical investigations of this

relationship suffer from theoretical and practical limitations, as does much of

the wider research on MECs. Notably, there are significant shortcomings in the

available literature regarding research design, adequacy of experimental variables,

and empirical measures of MECs.

1.4 Thesis overview

The exact nature of the relationships between MECs, expectation, and affective

and aesthetic responses remains unclear. The study of such relationships should

aim to address some of the limitations which have historically affected research in

empirical aesthetics, and stand to gain from the adoption of typically underused

methodological approaches. Notably, computational methods applied to large

collections of naturalistic stimuli are particularly well suited to the study of

MECs, but have yet to be used, despite the success of similar approaches in

research on music and emotion (e.g., Eerola, 2011).

Specifically, research on MECs should address the limitations discussed above

by providing clarity on the relationship between MECs, aesthetic, and emotional

responses, making use of naturalistic listening situations, and considering musical

events as they dynamically unfold in time rather than as an aggregated whole.

The present thesis seeks to do so by reviewing the suitability of using MECs in

musical aesthetics and emotion research, detailing the construction of several

large-scale, naturalistic datasets of pieces of music that elicit MECs, and using

such datasets in a range of behavioural and computational studies. The presented

research applies paradigms that address current gaps in the available knowledge

on MECs, and particularly the widely hypothesised role of musical expectation
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and associated factors, while attempting to solve ongoing issues of reproducibility,

generalisability, and ecological validity.

The context for the present work is presented as a systematic review of MECs

in Chapter 2. A longitudinal study of MECs is discussed in Chapter 3, exploring

the effects of musical content, stylistic preference, and familiarity. Computational

studies of MECs are detailed in Chapters 4 and 5, investigating expressed valence

and musical expectation respectively. The thesis concludes with a discussion of

the outcomes and implications of the present work in Chapter 6.
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Chapter 2

Systematic review

With the literature doubling in size since the last review on MECs, it has

become increasingly difficult to gain a broad and integrated understanding of

the empirical and theoretical research on the subject. Notably, crucial questions

remain about the criteria that are necessary and sufficient to characterise MECs.

In this chapter, we systematically review the literature on MECs in order to

reconcile diverging opinions and empirical findings on their psychological nature,

and to develop a preliminary model that provides a robust framework for future

hypothesis-driven research. We explore the context behind current research

on MECs, discuss how they relate to emotional and aesthetic responses, assess

current empirical measures and paradigms, summarise their physiological and

neural correlates, categorise their possible stimulus-driven elicitors, examine how

they are affected by individual differences, and evaluate theoretical perspectives

about their potential evolutionary causes. We conclude by providing a preliminary

model of MECs that suggests different pathways for the experience of MECs, a

dataset listing pieces of music reported to elicit MECs in the reviewed literature,

and a set of open issues, hypotheses, and recommended approaches for future

research.

2.1 Introduction

The knowledge base on MECs is rapidly expanding, and as research findings

accumulate, it is becoming increasingly difficult to gain a comprehensive and

integrated psychological picture of what MECs entail. Notably, crucial questions

remain about the criteria that are necessary and sufficient to characterise MECs.

Frequently cited papers describe MECs as “a spreading gooseflesh, hair-on-end

feeling that is common on the back of the neck and head and often moves down

the spine” (Panksepp, 1995, p. 173), “a particularly intense, euphoric response
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to music [frequently accompanied] by an autonomic or psychophysiological

component” (Blood & Zatorre, 2001, p. 11818), “intense emotional experiences

involving sensations such as goose bumps or shivers down the spine” (Koelsch,

2010, p. 131), or “a pleasant tingling feeling associated with the flexing of hair

follicles, resulting in gooseflesh (technically called piloerection) accompanied by

a cold sensation, and sometimes producing a shiver” (Huron & Margulis, 2010,

p. 591).

While superficially similar, these definitions provide pointers to crucial ques-

tions which need to be addressed. If MECs are to be used as an indicator of

pleasurable experiences, it is important to understand how universal and frequent

they are, as well as the nature of their relationship with emotional and aesthetic

responses, in order to assess whether or not their relevance is justified, and, if so,

clarify their underlying psychological mechanisms. The phenomenology of MECs

also deserves clarification, as it is unclear whether empirical findings refer to a

single psychophysiological response or to distinct experiences with little common

ground. The specificity of the physiological and neural signatures of MECs needs

to be explored to establish whether MECs invoke general-purpose mechanisms

involved in other functions, such as emotional processing and reward, or are

distinguishable from these experiences. Finally, it is necessary to investigate

the causes of MECs, both in terms of stimulus-driven properties and individual

differences, to better understand their origin, and thereby achieve a broader

and more integrated understanding of the empirical and theoretical research on

MECs.

MECs are often mentioned in the literature on music and emotion, but at the

time of writing, there are only three short reviews entirely dedicated to MECs

(Grewe et al., 2009b; L. Harrison & Loui, 2014; Mori & Iwanaga, 2014a), one

review about MECs and the autonomous sensory meridian response (del Campo

& Kehle, 2016), one review about MECs and music therapy (Tihanyi, 2016),

one philosophical essay about MECs and musical aesthetics (Levinson, 2006),

two book chapters discussing MECs within the context of musical expectation

(Huron & Margulis, 2010) and of the evolutionary basis of music (Altenmüller

et al., 2013), and book chapters on music and emotion which contain subsections

on MECs (e.g., Corrigall & Schellenberg, 2013, 2015; Hodges, 2016; Hunter &

Schellenberg, 2010; Juslin, 2019; McDermott, 2012; Sachs et al., 2018; Stark

et al., 2018; Vuust & Kringelbach, 2010).

Despite referring to the same phenomenon, as evidenced by the fact that these

contributions all make reference the same seminal papers on MECs (Blood &

Zatorre, 2001; Goldstein, 1980; Panksepp, 1995; Sloboda, 1991), the topics listed

above are very diverse, once again illustrating the need for a clear integration

of the 40 years of available research on MECs. The purpose of this chapter is

21



therefore to systematically review the literature on MECs in order to reconcile

diverging opinions and empirical findings on their psychological nature, and

to develop a preliminary model that provides a robust framework for future

hypothesis-driven research.

2.2 Methods

We performed a systematic literature search in order to ensure comprehensive

coverage. We opted to conduct a systematic review instead of a meta-analysis

because of the great diversity of topics and methods in research on MECs,

which results in insufficiently comparable research evidence for a quantitative

aggregation of empirical findings. We first outline the search procedure, before

going over the inclusion and exclusion criteria, and finally describing how the

findings are organised in the next sections of the present chapter.

2.2.1 Literature search

We searched the databases Web of Science, APA PsycInfo and PsycExtra,

PubMed, Scopus, and Google Scholar, using a cut-off date of 30 April 2020,

for articles, reviews, conference papers, books, book chapters, and doctoral

dissertations about chills and music. All contributions containing the term music

and at least one of chills, thrills, frisson, shivers, goosebumps, or piloerection

were considered, resulting in 149 records being identified on Web of Science,

85 records on APA PsycInfo and PsycExtra, 47 records on PubMed, and 127

records on Scopus. We also examined the first 100 records returned by Google

Scholar for the same search terms, as well as the first 100 records on Google

Scholar for contributions dated 2019 or later to ensure we did not miss recent

contributions. This process resulted in the identification of 346 unique records.

2.2.2 Inclusion and exclusion criteria

The objective was to include all publications about MECs. We therefore included

contributions written in any language, as long as they mentioned both chills

and music. The first exclusion criterion accounted for the fact that the queried

terms are commonly used in the English language, and therefore appear in many

publications which are not about MECs. As a result, 117 irrelevant records

were excluded. The second exclusion criterion accounted for the fact that MECs

are often briefly mentioned to provide context in broader studies, reviews, or

book chapters about music and emotion. As a result, 78 records containing no

substantial information about MECs were excluded. In addition, we excluded

five records that could not be retrieved, one article written in Japanese that could
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Figure 2.1: Yearly publication count for research on the topic of MECs reviewed
in this chapter.

not be translated online due to issues with character encoding, one corrigendum,

the content of which was already reflected in the associated publication, one

editorial which simply listed the topics covered in a specific journal issue, and

six records because the presented results were also fully covered in subsequent

journal articles that were retained in the search. Finally, we included 30 articles

and book chapters obtained through backward and forward reference searching,

resulting in a total of 167 contributions which represented, to our knowledge, all

the available academic literature on MECs.

2.2.3 Organisation of findings

The literature doubled in size since the reviews by L. Harrison and Loui (2014) and

Mori and Iwanaga (2014a)—in the present chapter, we reviewed 83 contributions

about MECs dated 2014 or prior, and 84 contributions dated 2015 or later (see

Figure 2.1 for the yearly publication count).

The vast majority of publications on MECs contain findings that pertain to

several domains of interest, which logically emerged as empirical and theoretical

findings were extracted from each reviewed study. As a consequence, instead

of attempting to allocate the publications themselves to meaningful units, we

distributed all of their findings across several overarching categories corresponding

to these domains, therefore allowing broad and integrative coverage of the most
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pertinent and widely researched topics in research on MECs. The results are

therefore structured as follows. Sections 2.3.1, 2.3.2, and 2.3.3 consider the

wider context within which empirical and theoretical research on MECs has been

conducted. We begin in Section 2.3.1 by considering terminological issues, the

phenomenological nature of MECs, their prevalence and frequency, and their

relationship with other psychological processes. In Section 2.3.2, we expand

on the nature of the relationship between MECs, pleasure, and emotional and

aesthetic experience, before assessing subjective and objective ways of measuring

MECs, as well as experimental paradigms used in research on MECs in Section

2.3.3. In the subsequent sections of the chapter, we review the empirical literature

on the biological basis of MECs, considering associations between MECs, arousal,

and physiological responses (Section 2.3.4), and neural correlates of MECs in

the basal ganglia and other brain structures (Section 2.3.5). We then turn to

theoretical considerations regarding the causes of MECs. We review the empirical

literature to identify the stimulus-driven causes of MECs and categorise them

into acoustic, musical, and emotional elicitors (Section 2.3.6), examine empirical

effects of individual and personality differences on the occurrence of MECs

(Section 2.3.7), and critically evaluate the degree of support provided by the

reviewed evidence for current theories on the function of MECs (Section 2.3.8).

These findings are summarised and expanded upon in the discussion, and the

quality of the reviewed research is evaluated, after which we conclude by providing

a preliminary model of MECs, a dataset listing pieces of music reported to elicit

MECs in the reviewed literature, and a set of hypotheses and recommendations

for future research.

2.3 Results

2.3.1 Context

A significant amount of research has focused on identifying exactly what MECs

are, but there remains uncertainty about many of their defining aspects. In this

section, we review the terminology associated with MECs, their phenomenolog-

ical nature, their prevalence and frequency, and their relationship with other

psychological processes, including emotional and aesthetic responses to music.

Terminology

Besides definitions of MECs, an initial source of confusion is the broad range of

terms used to refer to the phenomenon. Terms such as musical chills, aesthetic

chills, art-elicited chills, shivers, shivers down the spine, psychogenic shivering,

thrills, frisson, goosebumps, gooseflesh, goose pimples, piloerection, emotional
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piloerection, hair standing on end, and skin orgasm, have been used interchange-

ably over the years, and there is no explicit consensus as to which option should

be preferred. L. Harrison and Loui (2014) recommended the use of frisson, a

term first used in the context of research on MECs by Huron (2006) and Levinson

(2006), which has the advantage of providing a relatively nonspecific way to

describe an emotional response with a physiological component, while avoiding

the burden of cultural associations present in other terms. While this is a sound

recommendation, the term frisson is sparsely used in the literature. We would

argue that the need for a unified term of reference outweighs considerations

about the colloquial use of the term, and therefore recommend the use of chills1,

which has quite clearly become the most prevalent term in the recent literature.

In the present thesis, we use chills (for the psychophysiological response) and

piloerection (for goosebumps specifically) throughout, except when referring to

specific findings from authors who used several terms in a single publication.

Phenomenology

Regardless of the terminology used, it is important to have a clear and consistent

conception of the nature of MECs. This would ensure that participants in

research on MECs provide responses about the same psychophysiological phe-

nomenon. Failing to do so might lead to inconsistent empirical findings, making

interpretation problematic and creating difficulties in relating empirical results

between studies. However, identifying a clear and consistent phenomenological

description of MECs is not straightforward in the existing literature. Goldstein

(1980) provided a thorough starting point through a series of unstructured and

structured questionnaires, in which several groups of participants were asked to

describe their experience of MECs. The results characterised MECs as a tran-

sient, pleasurable response associated with sudden changes in mood or emotion,

commonly experienced by a large proportion of the population, and originating

primarily in the upper spine or back of the neck, with other common points

of origin being shoulders, lower spine, and scalp. Intense occurrences of MECs

were described as longer in duration, and radiating to other body areas (most

commonly the scalp, arms, shoulders, spine, and face). There are further, varying

reports of the location from which MECs originate. The back (or spine), head

(or scalp, face, or neck), and arms are the most commonly reported points of

origin (Craig, 2005; Goldstein, 1980; Neidlinger et al., 2017; Panksepp, 1995;

Wassiliwizky et al., 2015), with occasional mentions of hands or fingers (Craig,

1Following common usage in the literature, we use the word “chills” as a plural-only,
non-countable noun, like clothes or groceries. We feel this is consistent with the difficulty of
identifying exactly what would constitute an individual chill (or a definite number of chills)
and find it more natural to refer, for example, to an episode of chills.
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2005), as well as legs (Wassiliwizky et al., 2015).

Interestingly, Craig (2005) made the distinction between points of origin for

shivers or tingling (listed above) and piloerection, which was most often reported

to begin on the arms, back of the neck, or legs. This raises the important

question of whether piloerection should be considered as an integral component

of MECs or not. Again, opinions differ. While some definitions of MECs suggest

that piloerection is required (Huron & Margulis, 2010; Panksepp, 1995), most

do not (e.g., Blood & Zatorre, 2001; Goldstein, 1980), and empirical findings

support the latter view. In self-reports, piloerection is often reported to happen

less often than MECs (Gabrielsson, 2011; Silvia & Nusbaum, 2011; Sloboda,

1991). In experimental settings, piloerection was only observed in 57% (Craig,

2005), 40% (Benedek & Kaernbach, 2011), 43.1% (Sumpf et al., 2015), and

40.7% (Wassiliwizky, Koelsch, et al., 2017) of participants who reported MECs.

Seemingly, not all MECs involve piloerection (Craig, 2005), although most

(Benedek & Kaernbach, 2011) or all (Craig, 2005) occurrences of piloerection

were found to happen during experiences of MECs. It is therefore likely that

MECs, as reported by participants, do not always involve piloerection, although

it is possible that experienced MECs might require an intensity threshold to

be reached before piloerection can be observed (Sumpf et al., 2015), or that

current piloerection detection methods are simply not accurate enough (for an

overview of available methods, see Section 2.3.3). While relying on self-reported

or observed piloerection to study MECs is tempting, due to the objectivity it

provides, it seems more appropriate at this stage to combine such an approach

with self-reports of MECs (e.g., Wassiliwizky, Koelsch, et al., 2017), in order

to avoid biasing research away from what people actually experience as MECs

(Maruskin et al., 2012).

Prevalence and frequency

While 79% of the 249 participants who completed Goldstein’s (1980) question-

naires reported having experienced MECs in the past, additional figures about

the prevalence of the ability to experience MECs are available in the literature:

90% of a sample of 83 respondents for experiencing shivers down the spine at

least once in the past five years (Sloboda, 1991, also reporting 62% for goose

pimples and 31% for trembling), over 80% of 186 respondents for experiencing

shivers down the spine or goose pimples at least rarely over the past five years

(Mlejnek, 2013), or 86% of 828 respondents for experiencing MECs with some

regularity (Panksepp, 1995). In a survey of 196 people by Nusbaum and Silvia

(2011), 8% of respondents never or rarely experienced MECs, and in a survey

of 188 people by Silvia and Nusbaum (2011), 11.2%, 9.6%, and 23.5% never or
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rarely experienced chills down the spine, goosebumps, and feeling hair standing

on end, respectively, although it is worth keeping in mind that for the latter

study, only half of the reports were about experiences when listening to music.

There are further figures available in the literature, showing MECs as generally

less prevalent in experimental settings (e.g., Colver & El-Alayli, 2016; Grewe

et al., 2009a; Konečni et al., 2007), but when looking at prevalence, it makes

sense to consider only results from surveys of a reasonably representative sample

of the population, since participants in lab experiments have most often been

recruited for their ability to experience MECs, but might also not have been

able to experience MECs under experimental conditions for a variety of reasons.

Limitations remain, due to the fact that people interested in taking surveys

about reactions to music might not be fully representative of the population,

but from these results, it is reasonable to assume that 90% is an upper limit for

the proportion of the population that has the ability to experience MECs. Inter-

estingly, when providing free reports of their strongest, most intense experience

of music, respondents spontaneously included MECs or shivers in 10% of their

reports, and piloerection or gooseflesh in 5% of their reports (Gabrielsson, 2011).

In terms of frequency, those who experience MECs seem to do so quite

regularly. MECs are reported as the most frequent (Sloboda, 1991) or second

most frequent physical response to music, behind tears (Gabrielsson, 2011; Scherer

et al., 2001), and happen with some regularity for most people (Panksepp, 1995),

ranging from every week to every few months (Bannister, 2020b; Goldstein,

1980). For instance, during a week of experience sampling, 81% of respondents

reported having at least one experience of MECs, and reported MECs in 14% of

the occurrences of listening to music (Nusbaum et al., 2014).

Relation to other psychological processes

Another step in better understanding MECs is to examine the role they play in

emotional and aesthetic responses to music, with studies in which such responses

are classified using content analysis, factor analysis, or principal component

analysis. Panzarella (1980) found that MECs belong to one of the four major

dimensions which can describe intense, joyous experiences of listening to music

or looking at visual art. This dimension, called motor-sensory ecstasy, was

found to be mostly associated with the climactic stage of an aesthetic experience.

Scherer et al. (2001) coded qualitative reports of the last time respondents were

emotionally affected by a piece of music, and assigned MECs and piloerection to

one of five major emotion components, called physiological symptoms. Gabrielsson

and Wik (2003), as a part of their work on identifying the components and

causes of strong experiences related to music (Gabrielsson, 2001b), found that
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in descriptions of the strongest, most intense experiences of music reported by

almost 900 participants, MECs and piloerection were best coded and classified

as physiological reactions, a sub-component of physical reactions and behaviours.

Zentner et al. (2008), in a series of studies aimed at identifying and validating

a taxonomy of musically induced emotions for the development of the Geneva

Emotional Music Scale, retained MECs as one of 40 items present in a second-

order model of musical emotions. MECs were found to belong to one of nine

first-order factors, transcendence, which itself belongs to one of three second-order

factors, sublimity. Silvia and Nusbaum (2011) found that out of twelve unusual

aesthetic states, the three states related to MECs (chills down the spine, hair

standing on end, goosebumps) made up one of three factors, simply called chills.

The three factors (chills, touched, absorption) all loaded strongly on a single

higher-order factor for aesthetic experience. In developing the Barcelona Musical

Reward Questionnaire, Mas-Herrero et al. (2013) included an item about MECs

as one of twenty items that best capture individual differences in how people

experience reward associated with music. This item loaded highly on one of five

factors, named emotional evocation. Bannister (2020b) coded a large number

of reports of how surveyed participants felt during the experience of MECs,

and identified emotions and feelings and physical reactions as the two themes

accounting for most responses. Finally, Cotter et al. (2018) used MECs as an

item in a twenty-four-item questionnaire about feeling like crying in response to

music. The two resulting latent classes were named awe and sad, with higher

levels of experiencing MECs for the former than for the latter—a finding that

was replicated in a subsequent study (Cotter et al., 2019).

Two contributions using similar approaches deserve particular consideration,

due to their exclusive focus on the experience of chills. Maruskin et al. (2012)

put forward a convincing argument that chills might consist of a set of distinct

phenomena with different psychological and biological bases. This motivated an

extensive body of work in which a wide range of self-reports of the experience of

chills associated with emotionally significant events were analysed in order to gain

a better understanding of chills as a psychological construct. It was found that

chills are best understood as comprising four conceptually distinct sensations:

goosebumps, tingling (grouped together as a higher order factor, goosetingles,

associated with positive affective states), coldness, and shivers (grouped together

as coldshivers, associated with negative affective states). Similarly, Bannister

(2019), using a quantitative approach, investigated whether chills should be

considered as a single psychological construct, reflective of intense pleasure and

emotion, or as an umbrella term for distinct experiences. Analysis of responses

to questionnaire items revealed that chills can be conceptualised as comprising

three categories: warm chills (associated with positively valenced feelings and
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physical responses), cold chills (associated with negatively valenced feelings

and physical responses), and moving chills (associated with more ambiguous

responses, such as tears, feeling a lump in the throat, affection, or tenderness,

among others). Although it is tempting to draw parallels between the cate-

gories identified by Maruskin et al. (2012) and Bannister (2019), they are not

directly comparable because they were derived from responses to emotionally

significant events in one case, and aesthetic stimuli in the other. Regardless,

these considerations are of particular importance, because if chills are indeed a

collection of phenomenologically and psychologically distinct experiences, failing

to distinguish between them might lead to null, conflicting, or misleading results

(Bannister, 2019; Maruskin et al., 2012). Note, however, that the vast majority

of research on MECs continues to treat them as a single construct.

It is worth noting that several studies reviewed in this section and in the rest

of this chapter do not exclusively pertain to reactions to music. These studies

were included if they counted music as one of several investigated modalities, or

if they reported results relevant to research on MECs. For instance, chills are

known to occur in response to visual stimuli (Bannister, 2019; Goldstein, 1980;

Grewe et al., 2011; Maruskin et al., 2012; Panzarella, 1980; Silvia & Nusbaum,

2011; Sumpf et al., 2015; Wassiliwizky, Jacobsen, et al., 2017), and also to

text, poetry, film audio, sounds (human, animal, natural, and technical), speech,

beauty in nature, touch, smell, taste, memories, and virtual reality environments,

among others (Benedek & Kaernbach, 2011; Bériachvili, 2016; Goldstein, 1980;

Grewe et al., 2011; Konečni et al., 2007; Quesnel & Riecke, 2018; Schoeller &

Eskinazi, 2019; Schurtz et al., 2012; Wassiliwizky, Koelsch, et al., 2017). In cases

where occurrences of chills were compared across modalities, there is no consensus

as to whether music should be considered the most potent elicitor (Goldstein,

1980; Sumpf et al., 2015) or not (Bannister, 2019; Benedek & Kaernbach, 2011;

Grewe et al., 2011; Schurtz et al., 2012). Two of these studies set out to answer

that question explicitly through surveys (Goldstein, 1980; Schurtz et al., 2012),

while the other analyses of this effect simply compared occurrences of chills

across the specific sets of stimuli used in each study, making it difficult to assess

how generalisable these results are.

2.3.2 Emotion and aesthetics

As discussed in the previous section, MECs have been fairly consistently classified

as components of emotional or aesthetic experiences. However, there is also

considerable discussion about what constitutes such experiences, and therefore

their specific relationship with MECs deserves clarification. In this section,

we review how MECs are associated with emotional responses, pleasure, and
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aesthetic responses.

Emotional Response

MECs are often discussed in book chapters on music and emotion, either as a

physiological response which can accompany intense musical emotions (Juslin,

2016), or as a strong, specific emotional reaction to music (Eerola, 2018; Hunter

& Schellenberg, 2010). To disentangle these interpretations, it is useful to refer

to definitions of musical emotions. MECs show some of the qualities of emotional

states, as defined by Juslin et al. (2010), because they can involve a subjective

experience, observed in self-reports of emotional reactions to music, as discussed

earlier, and because they have been shown to involve physiological arousal, both in

terms of measured physiological responses and self-reported arousal (see Section

2.3.4). However, MECs do not clearly exhibit other characteristic components

of emotional states, such as motor expression or action tendency (Juslin et al.,

2010; Scherer, 2009), and they can be associated with positive or negative valence

(e.g., Bannister, 2019; Maruskin et al., 2012). These considerations suggest that,

instead of being considered as an emotion category or emotional state per se,

MECs are best understood as a psychophysiological response which can form

part of a range of emotional states (Grewe et al., 2011; Juslin, 2019).

Pleasure

In this thesis, we make a distinction between pleasure experienced while listening

to music and positively valenced music-evoked emotion (see E. Schubert, 2013).

It is perfectly possible, for example, to experience sadness while listening to a

piece of music but also to find that experience pleasurable. Most studies of MECs

have treated them as a pleasurable response to music. Interestingly, this notion

permeated the early literature on MECs despite limited evidence at the time that

MECs were indeed associated with pleasure (Blood & Zatorre, 2001; Goldstein,

1980). Since then, research has confirmed that such an association exists, as

shown by an analysis of qualitative reports in an extensive survey (Bannister,

2020b), by significant increases in pleasure occurring immediately prior to the

onset of MECs and peak pleasure coinciding with MECs (Salimpoor et al., 2009),

by a joint increase in pleasure and occurrence of chills when watching video

clips preceded by a meaningful statement as opposed to an incoherent statement

(Schoeller, Eskinazi, & Garreau, 2018; Schoeller & Perlovsky, 2016), by MECs

playing a role in driving music preference (Schäfer & Sedlmeier, 2010, 2011), and

more generally, by a documented association between MECs and self-reports

of increased subjective pleasure when listening to music (Grewe et al., 2011;

Grewe et al., 2009a; Grewe et al., 2007; Mori & Iwanaga, 2014b, 2015, 2017;
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Salimpoor et al., 2011; Salimpoor et al., 2009; Sumpf et al., 2015). Interestingly,

displeasurable chills can also be experienced in response to unpleasant sounds

(Grewe et al., 2011; Grunkina et al., 2017; Halpern et al., 1986; Klepzig et al.,

2020). Given that chills can form a part of unpleasant experiences, it is possible

that MECs are generally experienced as pleasurable because music listening itself

is generally a pleasurable activity (Dubé & Le Bel, 2003).

Aesthetic response

Since MECs are generally experienced as pleasurable, their role in aesthetic

responses also deserves clarification (Hodges, 2016). MECs have been referred

to as one of several indices of aesthetic experiences of music (E. Schubert et al.,

2016; Vuust & Kringelbach, 2010). As noted earlier, previous questionnaires

and qualitative reports about aesthetic responses to music have included MECs

(Panzarella, 1980; Silvia & Nusbaum, 2011). To better understand this relation-

ship, we need a precise definition of the aesthetic appreciation of music. Here,

we follow Levinson (2009) in characterising aesthetic appreciation as a positive

estimation based on an intrinsically pleasurable experience arising from attention

directed to the form and content of a piece of music. Based on the range of

psychological components thought to be involved in aesthetic appreciation (see

Leder et al., 2004; Leder & Nadal, 2014, for another extensive, multi-component

model), it seems unlikely that MECs should be considered as an aesthetic expe-

rience in and of themselves. Rather, a more promising interpretation would be

that MECs can contribute to aesthetic experiences, because they constitute a

pleasurable response to some musical properties (see Section 2.3.6). Indeed, in

a philosophical essay about MECs, Levinson (2006) argues that they provide

a signal that something significant happened in the music—in other words, a

focuser of attention—and in so doing, make a valuable contribution to wholly

experiencing a piece of music, through a culmination of cognitive, emotional,

physiological, and behavioural responses. According to E. Schubert et al. (2016),

this contribution, and that of other subjective experiences evoked by music (or

internal locus affects), is what motivates people to seek out aesthetic experiences.

Many researchers have considered MECs to form an optional, rather than a

central, component in the aesthetic experience of music (e.g., Bériachvili, 2016;

Brattico et al., 2013; Gabrielsson et al., 2016; Konečni, 2007), and this is a view

we share, in light of the reviewed literature.

2.3.3 Measures and paradigms

Most of the early research on MECs focused on the analysis of survey answers.

As the need for experimental data grew in order to adequately investigate MECs

31



occurring in response to specific stimuli, the methods used in lab or online

studies became increasingly diverse. These methods are described in this section,

with a focus on self-reports and objective measures of MECs (summarised in

Table 2.1), as well as experimental paradigms (summarised in Table 2.2) which

have dominated the empirical literature on MECs.

Self-reports

When listening to music, MECs can either be self-reported or observed, and

recorded retrospectively or continuously. A popular and convenient way to

measure MECs is to rely completely on retrospective self-reports about the

frequency or intensity of MECs (see Table 2.1 for a list of papers using this

approach), generally collected with a short questionnaire after each trial. This

has the advantage of requiring virtually no resources, but is also one of the least

informative ways to record MECs. As a more detailed approach, continuous

self-reports allow researchers to collect data on the specific timing of the onset—

and sometimes offset—of MECs, with the exception of two studies in which

participants were asked to keep a count of experiences of MECs on a scratch sheet

(Baltes, et al., 2011; Baltes, & Miu, 2014). In their simplest form, continuous

self-reports can be collected by asking participants to raise their finger or hand

for the duration of experienced MECs (Craig, 2005; Goldstein, 1980; Konečni

et al., 2007; Panksepp, 1995). Most commonly, however, participants report

MECs by pressing on a button (see Table 2.1), sometimes in conjunction with

continuous self-reports of valence and arousal, using bespoke interfaces such as

EMuJoy (Nagel et al., 2007). In a few cases, an analogue slider (Bannister &

Eerola, 2018) or a pressure-sensitive handle (Grunkina et al., 2017; Klepzig et al.,

2020) have been used instead of a button to collect continuous ratings of MECs

intensity, rather than a binary response about the occurrence of MECs.

An important methodological consideration in studies that use button presses

for MECs and collect skin conductance response data is whether the act of

pressing a button raises skin conductance response by itself. This has been

consistently demonstrated not to be the case (Bannister, 2020c; Colver & El-

Alayli, 2016; Grewe et al., 2011; Grewe et al., 2009a; Grewe et al., 2007; Guhn

et al., 2007; Mori & Iwanaga, 2014b, 2015; Rickard, 2004; Salimpoor et al., 2009).

Relatedly, several studies have validated button presses by only including the

reported MECs in the analysis if they are accompanied by an increase in skin

conductance response (Bannister, 2020c; Beier et al., 2020; Colver & El-Alayli,

2016; Egermann et al., 2011; Grewe et al., 2007; Mori & Iwanaga, 2014b).

This approach has the advantage of not exclusively relying on self-reports, but

considering the current lack of understanding regarding the exact relationship
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between MECs and skin conductance response (see Section 2.3.4), it might also

lead to valid occurrences of MECs being discarded, depending on the chosen

threshold.

Objective measures

The ideal way to record MECs would consist of an objective and continuous mea-

sure. Panksepp and Bernatzky (2002) made a brief reference to an inconclusive

attempt at measuring MECs using thermal imaging of the skin surface, following

a suggestion to use objective measures in an earlier publication (Panksepp,

1995). The authors concluded that directly measuring piloerection might be

more appropriate, as previously suggested by Sloboda (1991). This can be done

manually, as was the case in a study in which participants placed their arm

through a curtain, and observers noted the onset and offset of piloerection (Craig,

2005), or automatically, using devices which can monitor piloerection.

The most notable example of such devices is the Goosecam (Benedek et al.,

2010), an optical device which can be roughly described as a camera embedded

in a box that blocks external light, recording the skin of the forearm—or lower

leg in some later studies—from a close distance. LED lights shine on the skin

at an angle from within the box, allowing goosebumps to cast a shadow on

the skin. Images are then processed with a MATLAB toolbox using a discrete

Fourier transform to provide a continuous measure of piloerection. A piloerection

event occurs if the computed value exceeds an arbitrarily set threshold—usually

defined in terms of the number of standard deviations away from a baseline

recording—for a specified number of consecutive frames. The Goosecam has

been tested in one participant who had voluntary control over piloerection (for

an interesting exploratory investigation of this phenomenon, see Heathers et al.,

2018), and was found to provide observations consistent with human judges

(Benedek et al., 2010). It has since been used in several studies (see Table 2.1,

as well as Chapter 3 for use of the Goosecam in the present research).

Another piloerection-monitoring device was proposed by Kim et al. (2014),

and consists of a very thin, flexible, and compact sensor made of conductive

polymer, which can be affixed to the skin to measure the physical deformation of

its surface when goosebumps occur. The device was tested and validated by the

authors, but while it represents an elegant solution, it remains unused in other

studies to date, possibly because it requires resources which are less accessible

than those needed to build a Goosecam.
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Table 2.1: Measures of MECs

Type Method Papers

Retrospective
self-reports

Bannister (2019), Blood and Zatorre (2001), Carr and
Rickard (2016), Chabin et al. (2020), Goodchild et al.
(2019), Honda et al. (2020), Jaimovich et al. (2013), Ji
et al. (2019), Juslin et al. (2014), Park et al. (2019),
Polo (2017), Schäfer and Sedlmeier (2011), Schoeller
and Perlovsky (2016), Schoeller, Eskinazi, and Garreau
(2018), Schoeller and Eskinazi (2019), Seibt et al.
(2017), Silvia et al. (2015), Solberg and Dibben (2019),
Strick et al. (2015), Wassiliwizky et al. (2015), Weth
et al. (2015)

Continuous
self-reports

Raising finger or
hand

Craig (2005), Goldstein (1980), Konečni et al. (2007),
Panksepp (1995)

Scratch sheet Baltes, et al. (2011), Baltes, and Miu (2014)

Button Bannister (2020c), Beier et al. (2020), Colver and
El-Alayli (2016), Egermann et al. (2011), Ferreri et al.
(2019), Grewe et al. (2007), Grewe et al. (2009a),
Grewe et al. (2011), Guhn et al. (2007), Laeng et al.
(2016), Mas-Herrero et al. (2014), Mori and Iwanaga
(2014b), Mori and Iwanaga (2015), Mori and Iwanaga
(2017), Nagel et al. (2008), Polo (2017), Rickard (2004),
Sachs et al. (2016), Salimpoor et al. (2009), Salimpoor
et al. (2011), T. W. Schubert et al. (2018), Seibt et al.
(2018), Starcke et al. (2019), Sutherland et al. (2009),
Wassiliwizky, Koelsch, et al. (2017), Zickfeld, Schubert,
Seibt, Blomster, et al. (2019)

Analogue slider Bannister and Eerola (2018)

Pressure-sensitive
handle

Grunkina et al. (2017), Klepzig et al. (2020)

Objective
measures

Thermal imaging
(inconclusive)

Panksepp and Bernatzky (2002)

Direct observation Craig (2005)

Goosecam Benedek et al. (2010), Benedek and Kaernbach (2011),
Quesnel and Riecke (2018), Sumpf et al. (2015),
Wassiliwizky, Jacobsen, et al. (2017), Wassiliwizky,
Koelsch, et al. (2017)

Conductive polymer
sensor

Kim et al. (2014)

Paradigms

Careful study design is required to investigate the different aspects of MECs.

A popular approach initially used by Blood and Zatorre (2001) and in many

later studies (see Table 2.2) requires participants to provide songs during which

they often experience MECs. They are then asked to listen to these songs and

to songs provided by other participants, which act as a control. This has the

clear advantages of ensuring that genuine MECs are experienced, and excluding

the possibility that the effects observed were simply due to the properties of

each piece of music, since one participant’s MECs-inducing stimulus is another

participant’s control stimulus. Common findings in these studies are that partic-

ipants experience more MECs when listening to self-selected music, highlighting

possible effects of familiarity, stylistic preference, and meaning (see Sections 2.3.6

and 2.3.7), and demonstrating that MECs are not caused by stimulus-driven

properties alone. While this study design has been particularly fruitful because

MECs are often considered to be highly idiosyncratic (Nusbaum et al., 2014;
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Panksepp, 1995), it is important to bear in mind that MECs most likely involve

an interaction between listener, context, and music (see Section 2.4).

Other studies have compared or combined responses to self-selected stimuli

and to stimuli selected by the researchers (either arbitrarily or following a

pre-selection procedure), used experimenter-selected stimuli only, or participant-

selected stimuli only (see Table 2.2). Each of these approaches have distinct

advantages and disadvantages, such as the degree of control over what the

participants listen to, or how familiar they are with each piece of music. More

specifically, experimenter-selected stimuli allow precise control over stimulus

properties and familiarity, but may not always elicit MECs, whereas participant-

selected stimuli are very likely to induce genuine MECs, at the cost of lower

control over stimulus properties or familiarity.

Other paradigms provide better opportunities for making precise causal infer-

ences, through direct manipulation of the stimuli (Bannister, 2020c; Bannister

& Eerola, 2018; Honda et al., 2020; Juslin et al., 2014; Park et al., 2019), admin-

istration of substances thought to alter the experience of MECs (Ferreri et al.,

2019; Goldstein, 1980; Starcke et al., 2019), repeated presentation of the same

stimuli to the same participant (Grewe et al., 2007), or more broadly, through

the a priori design of clearly distinct experimental conditions (see Table 2.2).

Note that here, we are referring to causal paradigms, and not necessarily to

knowledge about what causes MECs, which is why these studies are discussed in

different sections of this chapter based on how relevant their findings are to each

section. Such causal designs are clearly capable of providing more robust insight

into MECs than experiments providing only correlational evidence, although

they come with their own set of challenges, such as manipulating stimuli while

maintaining ecological validity and avoiding the introduction of confounding

factors.

While less relevant to this review, it is worth mentioning a small set of

studies that have used MECs as an independent variable, leading to findings

that MECs led to improved communication and heightened self-perception in a

music therapy context (Lee, 2008), as also hypothesised by Tihanyi (2016), had

no effect on memory performance as measured by image recall (Carr & Rickard,

2016) or on craving reduction in abstinent individuals with alcohol use disorder

(Mathis & Han, 2017), had an effect on gait, as seen by increased cadence and

stride length, and reduced stride time (Park et al., 2019), did not improve

mood or increase generosity, helpfulness, or prosocial behaviour (Konečni et al.,

2007), but contradictorily, did promote altruistic behaviour (Fukui & Toyoshima,

2014). Three devices have also been designed in an attempt to induce chills,

through electrostatic force (Fukushima & Kajimoto, 2012) or coldness (Ishikawa

et al., 2019; Schoeller et al., 2019), with the purpose of enhancing emotional
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Table 2.2: Experimental paradigms used in research on MECs

Type Design Papers

No
manipulation

Experimenter-
selected music only

Baltes, et al. (2011), Baltes, and Miu (2014), Bannister
(2019), Colver and El-Alayli (2016), Grewe et al.
(2011), Grunkina et al. (2017), Guhn et al. (2007),
Jaimovich et al. (2013), Ji et al. (2019), Klepzig et al.
(2020), Konečni et al. (2007), Polo (2017), Schäfer and
Sedlmeier (2011), T. W. Schubert et al. (2018), Seibt
et al. (2017), Seibt et al. (2018), Silvia et al. (2015),
Solberg and Dibben (2019), Strick et al. (2015),
Wassiliwizky et al. (2015), Zickfeld, Schubert, Seibt,
Blomster, et al. (2019)

Participant-
selected music only

Craig (2009), Fukui and Toyoshima (2013),
Wassiliwizky, Jacobsen, et al. (2017)

Participant- vs.
experimenter-
selected music

Benedek and Kaernbach (2011), Carr and Rickard
(2016), Craig (2005), Grewe et al. (2007), Mas-Herrero
et al. (2014), Nagel et al. (2008), Panksepp (1995),
Quesnel and Riecke (2018), Rickard (2004), Weth et al.
(2015), Wassiliwizky, Koelsch, et al. (2017)

Participant-
selected vs. other
participants’ music

Blood and Zatorre (2001), Laeng et al. (2016), Mori
and Iwanaga (2014b), Mori and Iwanaga (2015), Mori
and Iwanaga (2017), Sachs et al. (2016), Salimpoor
et al. (2009), Salimpoor et al. (2011), Sumpf et al.
(2015)

Manipulation Stimulus
manipulation

Bannister and Eerola (2018), Bannister (2020c), Honda
et al. (2020), Juslin et al. (2014), Park et al. (2019)

Stimulus
comparison

Beier et al. (2020), Goodchild et al. (2019)

Group comparison Beier et al. (2020), Grewe et al. (2009a)

Treatment
comparison

Egermann et al. (2011), Schoeller and Perlovsky (2016),
Schoeller, Eskinazi, and Garreau (2018), Sutherland
et al. (2009)

Longitudinal Grewe et al. (2007)

Neurochemical Ferreri et al. (2019), Goldstein (1980), Starcke et al.
(2019)

Other Chills as
independent
variable

Carr and Rickard (2016), Fukui and Toyoshima (2014),
Konečni et al. (2007), Lee (2008), Mathis and Han
(2017), Park et al. (2019)

Chills induction
through physical
means

Fukushima and Kajimoto (2012), Ishikawa et al. (2019),
Schoeller et al. (2019)

experiences.

2.3.4 Physiological correlates

Being involved in emotional reactions, MECs are associated with autonomic

nervous system activity (Kreibig, 2010), and are therefore accompanied by a

set of physiological responses which have been studied extensively. We review

these responses by examining how electrodermal, cardiac, and other physiological

measures are associated with MECs (see Table 2.3 for a summary).

Skin measures

Electrodermal activity is typically decomposed into its tonic component, skin

conductance level, reflecting slow, smooth changes in baseline activity, and its

phasic component, skin conductance response, reflecting rapidly changing, event-
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related activity. Skin conductance level was found to increase around the onset

of MECs, either shortly before they occur (Grewe et al., 2009a) or shortly after

(Benedek & Kaernbach, 2011; Mori & Iwanaga, 2017), though a comparable

number of studies found no effects of MECs on this measure (Baltes, et al.,

2011; Carr & Rickard, 2016; Jaimovich et al., 2013; Schäfer & Sedlmeier, 2011).

The consensus is much more pronounced for skin conductance response, with

many studies reporting associations with MECs (see Table 2.3), and only three

not detecting such associations (Blood & Zatorre, 2001; Carr & Rickard, 2016;

Jaimovich et al., 2013). Specifically, skin conductance response has been found

to increase shortly before (Egermann et al., 2011; Grewe et al., 2009a; Salimpoor

et al., 2009) or after (Benedek & Kaernbach, 2011; Grewe et al., 2011; Mori &

Iwanaga, 2017) the onset of MECs, and to peak during (Craig, 2005; Salimpoor

et al., 2009) or shortly after (Grewe et al., 2009a; Mori & Iwanaga, 2017) MECs.

In some of these studies, however, self-reported MECs were only considered for

analysis if accompanied by an increase in skin conductance response (see Section

2.3.3), which might have biased the results to some extent. Finally, peripheral

skin temperature was found in some studies to decrease during MECs (Salimpoor

et al., 2009) or with MECs intensity (Salimpoor et al., 2011), although others

found no such association (Blood & Zatorre, 2001; Craig, 2005; Rickard, 2004).

Heart measures

Increases in heart rate (or decreases in interbeat interval—an inversely related

variable) have generally been found to be associated with MECs, though, again,

these findings have not always been replicated (see Table 2.3). Interestingly, in one

study, heart rate was found to increase only for MECs that involve piloerection

(Sumpf et al., 2015). Decreases in blood volume pulse amplitude (Benedek &

Kaernbach, 2011; Salimpoor et al., 2011; Salimpoor et al., 2009), increases in EK,

a specific ratio of cardiac amplitudes in the resting electrocardiogram associated

with emotionality (Sumpf et al., 2015), respiratory sinus arrhythmia, and power

in the low frequency of heart rate variability (Baltes, et al., 2011) have also been

associated with MECs, while no effects were found for heart rate variability

(Carr & Rickard, 2016), systolic blood pressure, diastolic blood pressure, power

in the very low frequency of heart rate variability, and the ratio between low

and high frequency powers of heart rate variability (Baltes, et al., 2011).

Other measures

Empirical evidence is mixed on the relationship between MECs and an increase

in respiration rate, with some studies finding supporting evidence, and others

failing to identify such a relationship (see Table 2.3). Respiration depth, however,
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has been found to increase in all (Benedek & Kaernbach, 2011; Blood & Zatorre,

2001; Grewe et al., 2009a) but one study (Mori & Iwanaga, 2017). Muscle tension,

as measured by electromyography, increased when listening to self-selected music

known to induce MECs (Blood & Zatorre, 2001), but was not reported to

increase with increased frequency of MECs (Rickard, 2004). Salivary cortisol

levels decreased when listening to music that induces MECs (Fukui & Toyoshima,

2013) but not with increased frequency of MECs (Rickard, 2004). Other salivary

hormone levels showed different patterns, with increases in estradiol, and no

changes in testosterone, though it is important to note that this was in response

to listening to music self-selected as likely to elicit MECs—occurrence of MECs

was not actually recorded in this study (Fukui & Toyoshima, 2013). Pupil

diameter, a physiological response associated with autonomic nervous system

changes, increased during MECs, but this was not the case for eye blinks, saccade

amplitude, or saccade dispersion (Laeng et al., 2016), and resting physiological

state, recorded as a pre-experiment baseline, was found to be associated with the

number of MECs when listening to self-selected music (Mori & Iwanaga, 2014b).

2.3.5 Neural correlates

The neural correlates of MECs are discussed in many papers, particularly when

referring to the results of Blood and Zatorre (2001) and Salimpoor et al. (2011).

Some very thorough reviews explore the neuroscience of music and emotion

in depth, with significant coverage of the neuroscientific literature on MECs

(e.g., Archie et al., 2013; Brattico et al., 2013; Brattico & Pearce, 2013; Chanda

& Levitin, 2013; Habibi & Damasio, 2014; Koelsch, 2010, 2014; Salimpoor &

Zatorre, 2013; Schaefer, 2017; Zatorre, 2003, 2015; Zatorre & Salimpoor, 2013).

Therefore, this section of the chapter presents a brief summary of the main

findings, examining how MECs are associated with the basal ganglia and other

neural structures, as well as results from lesion and neurochemical studies, and

research on anhedonia (see Table 2.4 for a summary by structure).

Basal ganglia

Structures belonging to the basal ganglia—a group of subcortical nuclei associated

with motor control, executive functions, habit formation, reward, and emotion,

among other functions—have been repeatedly linked with MECs. In the dorsal

striatum, increases in activation have been found in the putamen and left caudate

nucleus when comparing music listening with and without the experience of

pleasant MECs (Klepzig et al., 2020). Furthermore, in an earlier study, the

right caudate nucleus showed increased activation in anticipation of MECs,

as well as a positive relationship between dopamine release and number of
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Table 2.3: Physiological correlates of MECs

System Measure Papers and findings

Skin Skin conductance
level

Increase: Benedek and Kaernbach (2011), Grewe et al.
(2009a), Mori and Iwanaga (2017)
No effect: Baltes, et al. (2011), Carr and Rickard (2016),
Jaimovich et al. (2013), Schäfer and Sedlmeier (2011)

Skin conductance
response

Increase: Bannister and Eerola (2018), Benedek and
Kaernbach (2011), Craig (2005), Egermann et al. (2011),
Grewe et al. (2007), Grewe et al. (2009a), Grewe et al. (2011),
Guhn et al. (2007), Klepzig et al. (2020), Mas-Herrero et al.
(2014), Mori and Iwanaga (2014b), Mori and Iwanaga (2015),
Mori and Iwanaga (2017), Polo (2017), Rickard (2004), Sachs
et al. (2016), Salimpoor et al. (2009), Salimpoor et al. (2011)
Effect (direction not specified): Grewe et al. (2007)
No effect: Blood and Zatorre (2001), Carr and Rickard
(2016), Jaimovich et al. (2013)

Peripheral skin
temperature

Decrease: Salimpoor et al. (2009), Salimpoor et al. (2011)
No effect: Blood and Zatorre (2001), Craig (2005), Rickard
(2004)

Heart Heart rate Increase: Benedek and Kaernbach (2011), Blood and Zatorre
(2001), Grewe et al. (2009a), Guhn et al. (2007), Mas-Herrero
et al. (2014), Polo (2017), Sachs et al. (2016), Salimpoor et al.
(2009), Salimpoor et al. (2011), Sumpf et al. (2015)
No effect: Baltes, et al. (2011), Carr and Rickard (2016),
Grewe et al. (2011), Jaimovich et al. (2013), Mori and
Iwanaga (2017), Rickard (2004), Schäfer and Sedlmeier (2011)

Blood volume
pulse amplitude

Decrease: Benedek and Kaernbach (2011), Salimpoor et al.
(2009), Salimpoor et al. (2011)

Lesser-used
measures

See Section 2.3.4

Other Respiration rate Increase: Baltes, et al. (2011), Salimpoor et al. (2009),
Salimpoor et al. (2011)
No effect: Benedek and Kaernbach (2011), Grewe et al.
(2011), Mori and Iwanaga (2017), Sumpf et al. (2015)

Respiration depth Increase: Benedek and Kaernbach (2011), Blood and
Zatorre (2001), Grewe et al. (2009a)
No effect: Mori and Iwanaga (2017)

Muscle tension Increase: Blood and Zatorre (2001)
No effect: Rickard (2004)

Salivary cortisol Decrease: Fukui and Toyoshima (2013)
No effect: Rickard (2004)

Lesser-used
measures

See Section 2.3.4

MECs (Salimpoor et al., 2011). Effects have also been found in the ventral

striatum, which showed increased activation in response to pleasant MECs in a

healthy control, but not in a patient with lesions following an extended stroke

of the left middle cerebral artery (Grunkina et al., 2017). Activation in the left

ventral striatum increased when listening to music that was self-selected to elicit

pleasant emotional responses, including MECs, and was positively correlated

with ratings of MECs intensity (Blood & Zatorre, 2001). Within the ventral

striatum, the right nucleus accumbens showed increased activation during MECs,

and a positive relationship between dopamine release, intensity of MECs, and

degree of pleasure (Salimpoor et al., 2011), suggesting an involvement of this

structure in processing the hedonic and reinforcing aspects of musical pleasure

(Chanda & Levitin, 2013).
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Other subcortical structures and cortical regions

In addition to the nucleus accumbens, associations with MECs have been re-

ported for a wide range of limbic and paralimbic structures (i.e., structures

originating from brain areas typically associated with emotion, long-term mem-

ory, and motivation, among other functions), such as the amygdala (Griffiths

et al., 2004; Grunkina et al., 2017) and the left hippocampus, both of which

showed decreased activation as MECs intensity increased (Blood & Zatorre,

2001), as well as the cingulate cortex (Blood & Zatorre, 2001), the insular

cortex (Blood & Zatorre, 2001; Griffiths et al., 2004; Grunkina et al., 2017;

Klepzig et al., 2020), and the orbitofrontal cortex (Blood & Zatorre, 2001),

which all displayed increased activation with MECs (or an impaired ability

to experience MECs for patients with an insular lesion—see next subsection),

demonstrating a widespread involvement of the limbic system and associated

cortical regions. Other brain structures and cortical regions have also shown

increased activation with MECs, such as the primary auditory cortex and the

secondary somatosensory cortex (Grunkina et al., 2017), the thalamus (Blood

& Zatorre, 2001; Grunkina et al., 2017; Klepzig et al., 2020), the dorsomedial

midbrain, the supplementary motor area, the cerebellum (Blood & Zatorre,

2001), including the right cerebellar hemisphere (Klepzig et al., 2020), and the

locus coeruleus, as indicated by pupillary dilation during MECs (Laeng et al.,

2016), as well as decreased activation for the ventromedial prefrontal cortex, the

cuneus, and the precuneus (Blood & Zatorre, 2001).

Structural, neuropsychological, and neurochemical findings

White matter connectivity, the volume or density of the myelinated pathways

between different areas of the brain, was investigated by Sachs et al. (2016), who

reported increased tract volume from the posterior superior temporal gyrus to

the anterior insula and medial prefrontal cortex—these tracts being part of the

uncinate fasciculus, among others—in people who experience MECs frequently

and consistently, but no difference in corticospinal tract volume, suggesting that

these differences are specific, and not a result of general differences in white

matter connectivity (Sachs et al., 2016). A study taking advantage of data

from the Human Connectome Project (Van Essen et al., 2013) revealed that

proneness to MECs is associated with higher resting-state functional connectivity

between the default network and sensory and motor cortices, between the ventral

default and salience networks, and lower connectivity between the cerebellum

and somatomotor cortex, suggesting a greater integration between environmental

perception and internal emotional experience (Williams et al., 2018).

Lesion studies have provided support for the involvement of these structures
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and tracts. A patient with lesions in the left insula and left amygdala exhibited

impaired emotional processing of music, despite normal music perception and

processing (Griffiths et al., 2004). Another patient lost the ability to perceive

subtle differences between musical performances and to experience pleasure and

MECs, following a lesion in the right putamen that impaired connectivity between

the right insula and the superior temporal lobe, including the auditory cortex

(Satoh et al., 2016). Finally, another patient with damage in the pyramidal tract,

uncinate fasciculus, and left anterior insular cortex showed reports of MECs

intensity consistent with a healthy control, but diminished bodily responses as

indexed by changes in skin conductance level and skin conductance response

(Grunkina et al., 2017).

Neurochemical findings provide some clarity on the role of endogenous opi-

oids and dopamine. MECs were attenuated in three out of ten participants

administered with naloxone, an opiate receptor antagonist (Goldstein, 1980)—a

preliminary finding which received further support from a decrease in self-reported

pleasure for pleasurable music after inducing anhedonia with naltrexone, a µ-

opioid antagonist similar to naloxone (Mallik et al., 2017). Furthermore, the

amount of time experiencing MECs was higher than placebo following intake

of levodopa, a dopamine precursor, and lower than placebo following intake of

risperidone, a dopamine antagonist (Ferreri et al., 2019).

Anhedonia

The literature on anhedonia further supports the results of neuroimaging, neu-

rochemical, and lesion studies. Higher physical anhedonia, characterised by

diminished reward from physical and sensory experiences, has been associated

with experiencing MECs less often (Nusbaum et al., 2015), and shown to involve

reduced activation in the left ventral striatum and increased activation in the

ventromedial cortex (Dowd & Barch, 2012; Harvey et al., 2007; as cited by

Nusbaum et al., 2015). Specific musical anhedonia, characterised by a failure to

find music rewarding despite normal music perception, normal musical emotion

recognition, and the absence of generalised anhedonia, can be measured with the

Barcelona Musical Reward Questionnaire (Mas-Herrero et al., 2013), and has

been found to be associated with fewer and less intense experiences of MECs,

and a lack of increase in skin conductance response (except for one anhedonic

participant), despite behavioural reports of MECs by some anhedonic partici-

pants (Mas-Herrero et al., 2014). Interestingly, tract volume between the left

superior temporal gyrus and the left nucleus accumbens was shown to be lower for

participants with severe musical anhedonia (Loui et al., 2017), providing further

support for the involvement of white matter connectivity between auditory and
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Table 2.4: Neural correlates of MECs

Group Structure Papers and findings

Basal ganglia Dorsal striatum:
Putamen

Increased activation: Klepzig et al. (2020)
Impaired with right lesion: Satoh et al. (2016)

Dorsal striatum:
Caudate nucleus

Increased left activation: Klepzig et al. (2020)
Increased right activation: Salimpoor et al. (2011)

Ventral striatum Increased activation: Grunkina et al. (2017)
Increased left activation: Blood and Zatorre (2001)

Ventral striatum:
Nucleus accumbens

Increased right activation: Salimpoor et al. (2011)

Limbic and
paralimbic
structures

Amygdala Decreased activation: Blood and Zatorre (2001)
Increased activation: Grunkina et al. (2017)
Impaired with left lesion: Griffiths et al. (2004)

Hippocampus Decreased left activation: Blood and Zatorre (2001)

Cingulate cortex Increased activation: Blood and Zatorre (2001)

Insular cortex Increased activation: Blood and Zatorre (2001),
Grunkina et al. (2017), Klepzig et al. (2020)
Impaired with left lesion: Griffiths et al. (2004),
Grunkina et al. (2017)

Orbitofrontal cortex Increased activation: Blood and Zatorre (2001)

Other Primary auditory
cortex

Increased activation: Grunkina et al. (2017)

Secondary
somatosensory
cortex

Increased activation: Grunkina et al. (2017)

Ventromedial
prefrontal cortex

Decreased activation: Blood and Zatorre (2001)

Thalamus Increased activation: Blood and Zatorre (2001),
Grunkina et al. (2017), Klepzig et al. (2020)

Dorsomedial
midbrain

Increased activation: Blood and Zatorre (2001)

Supplementary
motor area

Increased activation: Blood and Zatorre (2001)

Cerebellum Increased activation: Blood and Zatorre (2001)
Increased right activation: Klepzig et al. (2020)

Locus coeruleus Increased activation: Laeng et al. (2016)

Cuneus Decreased activation: Blood and Zatorre (2001)

Precuneus Decreased activation: Blood and Zatorre (2001)

Tracts Uncinate fasciculus Impaired with lesion: Grunkina et al. (2017)
Increased tract volume: Sachs et al. (2016)

Pyramidal tract Impaired with lesion: Grunkina et al. (2017)
No effect of corticospinal tract volume: Sachs
et al. (2016)

Right insula to
superior temporal
lobe

Impaired with lesion: Satoh et al. (2016)

Default network to
sensory and motor
cortices

High functional connectivity: Williams et al. (2018)

Ventral default to
salience network

High functional connectivity: Williams et al. (2018)

Cerebellum to
somatomotor cortex

Low functional connectivity: Williams et al. (2018)

limbic structures.

2.3.6 Elicitors

The stimulus-driven elicitors of MECs fall into three broad categories: low-level

acoustic elicitors, representing basic properties of the auditory signal, high-level

musical elicitors, representing stimulus properties more specific to music, such
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as harmonic movement, and emotional elicitors, representing subjectively felt

emotions in pieces of music. Understanding these elicitors is necessary in order

to assess which psychological mechanisms might underlie MECs, and to inform

theories on the function of MECs. As a result, considerable attention has been

given to identifying these elicitors, as reviewed in this section, and summarised

in Table 2.5.

Acoustic elicitors

MECs have repeatedly been linked with dynamic acoustic changes, and most

often when such changes are sudden (Auricchio, 2017; Guhn et al., 2007; Nagel

et al., 2008; Polo, 2017; Sloboda, 1991). More specifically, increased loudness or

more frequent peaks in loudness were found around the onset of MECs (Beier

et al., 2020; Grewe et al., 2007; Guhn et al., 2007; Honda et al., 2020; Nagel et al.,

2008), particularly in the 920–4400 Hz band (Nagel et al., 2008). Loudness was

also associated with continuous ratings of MECs intensity (Bannister & Eerola,

2018), and experimentally increasing the loudness of a musical passage known

to often induce MECs and likely to engage auditory looming (see Section 2.3.8)

resulted in more frequent experiences of MECs (Bannister, 2020c). Pleasure

could be a mediating factor, however, with changes in volume leading to increased

pleasure in some cases (Grewe et al., 2007), but decreased in others (Bannister,

2020c). MECs have also been shown to co-occur with higher event density

(Bannister & Eerola, 2018; Nagel et al., 2008; Polo, 2017), expansion of the

frequency range in the high or low register (Guhn et al., 2007; Polo, 2017),

higher spectral centroid and spectral flux (Bannister & Eerola, 2018), increased

roughness, dissonance, or fluctuation strength (Bannister & Eerola, 2018; Beier

et al., 2020; Grewe et al., 2007; Nagel et al., 2008; Park et al., 2019), higher

variance in interaural level difference, a measure which captures rotation in

binaural recordings (Honda et al., 2020), and increased sharpness or brightness

(Bannister & Eerola, 2018; Beier et al., 2020; Grewe et al., 2007; Honda et al.,

2020), although, for one specific song, increasing brightness was found to reduce

the frequency of MECs (Bannister, 2020c).

Musical elicitors

A number of features more specific to music have also been identified as potential

elicitors of MECs, expanding on what was initially described as “dramatic peaks

and valleys in music” (Goldstein, 1980, p. 127). Related to increases in loudness

discussed in the previous paragraph, crescendi, build-ups, and climaxes have been

linked with MECs (Auricchio, 2017; Bannister, 2020b; Bannister & Eerola, 2018;

Panksepp, 1995; Polo, 2017; Solberg & Dibben, 2019). In addition to sudden
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dynamic changes, Sloboda (1991) identified several structural characteristics

of musical excerpts that elicit MECs, such as new or unprepared harmonies,

sudden textural changes, melodic appoggiaturas, enharmonic changes, specific

melodic or harmonic sequences, or prominent musical events arriving earlier

than prepared for, among others. Similar melodic and harmonic properties,

including structural transitions and alterations such as changes in tonality, were

subsequently associated with MECs in several empirical studies (Auricchio, 2017;

Bannister, 2020b; Bannister & Eerola, 2018; Guhn et al., 2007; Mlejnek, 2013;

Schurtz et al., 2012), in addition to rhythmic properties (Schurtz et al., 2012;

Solberg & Dibben, 2019), although the two latter studies lack specific detail

about which rhythmic properties were involved (for a hypothesis about optimal

tempo, see McEvilly, 1999). A recurrent theme is textural changes (Auricchio,

2017; Polo, 2017; Sloboda, 1991; Solberg & Dibben, 2019), particularly with

the entrance of new instruments, and the alternation, contrast, or communion

between solo and accompanying instruments (Auricchio, 2017; Bannister, 2020b;

Bannister & Eerola, 2018; Goodchild et al., 2019; Guhn et al., 2007; Mlejnek,

2013), which are considered particularly pleasurable by listeners (Grewe et al.,

2007). Voice and lyrics have also been identified as potent elicitors of MECs

(Bannister, 2020b; Schurtz et al., 2012), and some researchers have identified

passages from slow movements (Guhn et al., 2007) and virtuosity (Mlejnek, 2013)

as possible causes of MECs.

Finally, in a causal study by Bannister and Eerola (2018), MECs were

found to happen less frequently, and to be rated as less intense, when specific

passages known to often elicit MECs were removed from three pieces of music.

Interestingly, as opposed to MECs, skin conductance response did not diminish

when these passages were removed. This suggests that physiological arousal is

dependent on local musical context, and possibly linked to the anticipation of

MECs. Another point of interest reported by Bannister and Eerola (2018) is that

acoustic and musical elicitors might be intrinsically related, since the entrance

of new instruments, for instance, would naturally come along with dynamic

and spectral changes (see also Auricchio, 2017). Research that comprehensively

teases apart the effects of acoustic and musical elicitors is needed to better

understand how stimulus properties influence the occurrence of MECs.

Emotional elicitors

MECs can also arise from the perception of emotions expressed by music, which,

for present purposes, can be broadly grouped into valence, emotionality, and

meaning. While frequency of self-reported MECs has been found to increase when

listening to music rated as positively valenced (Grewe et al., 2011), associations
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between MECs and perceived sadness in female participants were found by

Panksepp (1995) following a series of experiments. In this study, however,

both happy and sad music were reported to elicit MECs, as was the case

in other studies linking both positive and negative perceived emotions with

MECs (Bannister, 2020b; Mori & Iwanaga, 2017). Rather than valence, greater

perceived emotionality, whether positively or negatively valenced, has often been

identified as a possible cause of MECs, whether it is referred to as such (Beier

et al., 2020), as emotional power (Rickard, 2004), as perceived emotional content

(Panksepp, 1995), as emotional intensity (Bannister & Eerola, 2018), or as the

climactic stage of an aesthetic experience (Panzarella, 1980).

Finally, related to the effect of lyrics discussed in the previous subsection

(Bannister, 2020b; Schurtz et al., 2012), MECs have been found to be associated

with the perception of meaning in music, whether it is meaning of lyrics (Bannis-

ter, 2020b), personal meaning (Craig, 2009; Goldstein, 1980), or extra-musical

meaning, such as pride or patriotism (Mlejnek, 2013). Notably, some studies of

the effects of meaning have focused on priming effects, and resulted in conflicting

perspectives. Specifically, while there was little to no effect of presenting vari-

ous types of priming stimulus (national anthems, stories, architectural objects,

paintings) on the frequency or duration of MECs when subsequently listening to

a piece of music (Konečni et al., 2007), being exposed to a complex, existential

statement, as opposed to an incoherent statement, increased the number of

chills experienced when watching subsequent video clips (Schoeller, Eskinazi, &

Garreau, 2018; Schoeller & Perlovsky, 2016). Interestingly, Konečni et al. (2007)

also observed that there was no priming effect of experiencing MECs themselves

on subsequent experiences of MECs, whereas frequency of MECs has been found

to increase (Benedek & Kaernbach, 2011) or decrease (Laeng et al., 2016) with

trial number during experiments (and therefore, following previous occurrences

of MECs), highlighting a lack of consensus on the matter.

Underlying mechanisms

When it comes to understanding how these various elicitors might cause MECs,

it is useful to consider potential underlying psychological mechanisms. A useful

framework for doing so comes from an extensive body of work which sought

to provide a unified theory of evoked musical emotions in the form of a set of

underlying mechanisms (Juslin, 2013; Juslin & Västfjäll, 2008), the diversity of

which was echoed by Huron (2016) when discussing the range of ways in which

sounds are thought to evoke pleasure. It could be that these mechanisms are also

involved in the experience of MECs, by evoking emotions which would in turn

induce MECs, or by directly inducing MECs, but not fully-fledged emotional
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Table 2.5: Elicitors of MECs

Category Elicitor Papers and findings

Acoustic Loudness Sudden change: Auricchio (2017), Guhn et al. (2007),
Nagel et al. (2008), Polo (2017), Sloboda (1991)
Increase or more frequent peaks: Bannister and Eerola
(2018), Bannister (2020c), Beier et al. (2020), Grewe et al.
(2007), Guhn et al. (2007), Honda et al. (2020), Nagel et al.
(2008)

Event density High levels: Bannister and Eerola (2018), Nagel et al.
(2008), Polo (2017)

Frequency range Expansion in high or low register: Guhn et al. (2007),
Polo (2017)

Spectral centroid or
flux

High levels: Bannister and Eerola (2018)

Roughness,
dissonance, or
fluctuation strength

Increase: Bannister and Eerola (2018), Beier et al. (2020),
Grewe et al. (2007), Nagel et al. (2008), Park et al. (2019)

Brightness or
sharpness

Increase: Bannister and Eerola (2018), Beier et al. (2020),
Grewe et al. (2007), Honda et al. (2020)
Decrease: Bannister (2020c)

Interaural level
difference

High variance: Honda et al. (2020)

Musical Crescendi,
build-ups, and
climaxes

Auricchio (2017), Bannister and Eerola (2018), Bannister
(2020b), Goldstein (1980), Panksepp (1995), Polo (2017),
Solberg and Dibben (2019)

Changes in
structure, melody,
or harmony

Auricchio (2017), Bannister and Eerola (2018), Bannister
(2020b), Guhn et al. (2007), Mlejnek (2013), Schurtz et al.
(2012), Sloboda (1991)

Rhythmic
properties

Schurtz et al. (2012), Solberg and Dibben (2019)

Textural changes In general: Auricchio (2017), Polo (2017), Sloboda (1991),
Solberg and Dibben (2019)
Entrance or interplay between instruments: Auricchio
(2017), Bannister and Eerola (2018), Bannister (2020b),
Goodchild et al. (2019), Guhn et al. (2007), Mlejnek (2013)

Voice and lyrics Bannister (2020b), Schurtz et al. (2012)

Slow movements Guhn et al. (2007)

Virtuosity Mlejnek (2013)

Emotional Perceived valence Positive: Grewe et al. (2011)
Both positive and negative: Bannister (2020b), Mori
and Iwanaga (2017), Panksepp (1995)

Perceived
emotionality

Bannister and Eerola (2018), Beier et al. (2020), Grewe
et al. (2009a), Panksepp (1995), Panzarella (1980), Rickard
(2004)

Perceived meaning Effect: Bannister (2020b), Craig (2009), Goldstein (1980),
Mlejnek (2013), Schoeller and Perlovsky (2016), Schoeller,
Eskinazi, and Garreau (2018)
No effect: Konečni et al. (2007)

experiences.

In this framework, brain stem reflex refers to the process by which low-level

acoustic features quickly and automatically elicit emotions when exceeding a

threshold value (Juslin, 2013), and would provide a reasonable explanation

as to why acoustic elicitors such as sudden changes in loudness or dissonance

might cause physiological arousal and MECs (L. Harrison & Loui, 2014; Juslin

et al., 2014), although it is worth pointing out that for MECs, the correspond-

ing mechanism reflects relatively automatic reactions to sudden changes in the

acoustic signal, rather than a psychological startle response specifically. Musical

expectation, as discussed in Chapter 1, is based on the hypothesis that devel-
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oping expectations follows a process of probabilistic learning of the statistical

regularities in musical structure (Pearce, 2018; Saffran et al., 1999). Musical

expectation has often been posited as a cause of MECs (L. Harrison & Loui,

2014; Huron, 2006; Huron & Margulis, 2010; Juslin, 2013; Juslin & Västfjäll,

2008; McDermott, 2012; Mencke et al., 2019; Pearce & Wiggins, 2012; Salimpoor

et al., 2011; Sloboda, 1991), and indeed, the majority of the musical elicitors

discussed in this section could engage such a mechanism. Interestingly, Levinson

(2006) suggested that there might be two types of MECs, the first type induced

timbrally or dynamically, and the second type induced melodically, harmonically,

or rhythmically. This is consistent with the possible involvement of brain stem

reflex, on the one hand, and musical expectation, on the other.

Other mechanisms underlying emotional responses to music have also been

discussed in relationship to MECs, such as episodic memory (Goldstein, 1980),

evaluative conditioning, or emotional contagion (L. Harrison & Loui, 2014),

all of which have been linked speculatively by these authors to some of the

emotional elicitors discussed in the previous subsection. Paradoxically, when

underlying mechanisms were explicitly investigated, either systematically (Juslin

et al., 2014) or through self-reports (Bannister, 2020b; Bannister & Eerola,

2018), emotional contagion was strongly linked to MECs, but brain stem reflex

and musical expectation were not. These results, however, could reflect the

distinct possibility that the experimental manipulations of the musical stimuli

did not adequately target the mechanisms in question, that listeners do not have

sufficient conscious access to the reasons why they experience MECs to be able

to self-report them, or that such conscious access varies between mechanisms.

Further investigation is therefore needed to obtain conclusive answers about the

psychological mechanisms that underlie MECs.

Associated factors

There exist other factors that potentially contribute to the elicitation of MECs.

While these have rarely been the primary topic of investigation, they are often

reported, and provide useful context to the findings discussed in this section.

Some authors covered listening situations, comparing occurrences of MECs when

listening to music alone or with others. In most cases, no differences were

found (Egermann et al., 2011; Nusbaum et al., 2014; Sutherland et al., 2009),

although peaks in skin conductance response were higher during MECs when

listening alone than when listening in a group (Egermann et al., 2011), and survey

respondents reported most experiences of MECs to happen during solo listening

(Bannister, 2020b). These findings might reflect an effect of attention (Beier

et al., 2020; Nusbaum et al., 2014; see also Mori & Iwanaga, 2014a), possibly
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related to alcohol intake being found to reduce frequency of MECs (Starcke et al.,

2019), which would provide further support for the suggested role of attention

in aesthetic responses (see Section 2.3.2). Interestingly, theories of dynamic

attending (Jones & Boltz, 1989; Large & Jones, 1999) suggest a relationship

between attention and temporal expectation, through which attention is directed

at points in time which are expected to be more salient. Such a relationship

could provide a possible mechanism through which increased attention affects

MECs via musical expectation, and could provide a partial explanation for the

involvement of neural structures associated with predictive timing and rhythm

perception in MECs (Grahn & Brett, 2007; Teki et al., 2011), such as the

basal ganglia. Future research should aim to investigate these issues in order to

establish the precise nature of the relationship between attention and MECs.

Another important effect is that of repetition and familiarity. Listening to the

same piece of music several times within a single experimental session was not

found to affect the frequency or intensity of MECs (Baltes, et al., 2011; Bannister,

2020c; Blood & Zatorre, 2001), but doing so every day over a week led to reduced

frequency of MECs (Grewe et al., 2007), possibly due to habituation, although

this longitudinal effect was investigated in only one participant. Over longer

time scales, MECs have been reported to be a reliable response, and even to

grow with repeated listening (Sloboda, 1991). More generally, conflicting effects

of familiarity have been identified, with some studies reporting more occurrences

of MECs for familiar stimuli (Craig, 2005; Grewe et al., 2009a; Panksepp, 1995;

Rickard, 2004; Weth et al., 2015), and other studies reporting no effects of

stimulus familiarity (Bannister, 2019; Bannister & Eerola, 2018; Benedek &

Kaernbach, 2011; Colver & El-Alayli, 2016; Guhn et al., 2007; Rickard, 2004;

Wassiliwizky et al., 2015), although some of these studies featured stimuli which

were either all very familiar (Benedek & Kaernbach, 2011), or very unfamiliar

(Colver & El-Alayli, 2016; Guhn et al., 2007). Familiarity has been argued to be

a strong driver of aesthetic experiences, in conjunction with surprise, complexity,

and expectation (Greasley & Lamont, 2016; Salimpoor et al., 2015; Verhaeghen,

2018), and could contribute to the elicitation of MECs by increasing recognition

of meaning in music or by promoting a conflict between schematic and veridical

expectation (Bharucha, 1994; Huron, 2006; Miranda & Ullman, 2007; Salimpoor

et al., 2015), allowing unconscious surprise, caused by schematically unexpected

events, to continue to occur in very familiar music, which would be veridically

highly expected. This remains speculative, until further empirical research

provides greater clarity on the association between familiarity and MECs.
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2.3.7 Individual differences

While most people seem to have the ability to experience MECs (see Section

2.3.1), not everyone can or does so equally often. As a result, there has been

some interest in identifying how individual differences might affect the prevalence

of MECs and the frequency of experiencing them. In this section, we review the

evidence on the role played by gender, age, musical training, and personality

differences in the experience of MECs (see summary in Table 2.6).

Gender, age, and musical training

Panksepp (1995) identified in a series of experiments that women find sad music

more likely to cause MECs than men, and vice versa for happy music, among

other findings showing, especially for women, a relationship between MECs and

perceived sadness. Similarly, Benedek and Kaernbach (2011) detected an effect of

gender, with more women experiencing piloerection than men when listening to

music and film audio, although the study involved an uneven gender ratio. The

vast majority of studies that analysed the effect of gender, however, have reported

no influence on MECs (see Table 2.6). The effect of age on MECs is less clear.

Correlations with age have been found (Williams et al., 2018), including for some

(e.g., goose pimples) but not all (e.g., shivers down the spine) reactions to music

related to MECs (Mlejnek, 2013), and age positively predicted a small amount

of variance in the number of MECs experienced during an opera performance

(Baltes, & Miu, 2014), whereas no effect of age was identified by Grewe et al.

(2009a), Mori and Iwanaga (2014b), Starcke et al. (2019), and Zickfeld, Schubert,

Seibt, Blomster, et al. (2019). Regarding effects of musical training, Nusbaum

and Silvia (2011) found that playing an instrument is a significant predictor of

the frequency of experiences of MECs, while Beier et al. (2020) reported effects

of Western music theory knowledge on MECs experienced when listening to

Western, Indian, but not Chinese music. However, other empirical evidence does

not support an effect of musical training or musical sophistication (Müllensiefen

et al., 2014) on MECs (Bannister & Eerola, 2018; Grewe et al., 2009a; Guhn

et al., 2007; Polo, 2017; Rickard, 2004). It is important to note that most of

these findings were not hypothesis-driven and there is very little theoretical

basis for hypothesising effects of gender, age and musical training on MECs.

Considering this limitation, as well as the limited scope of some of the results

(discussed above), it is reasonable to assume that, for the most part, MECs are

experienced independently of gender, age, and musical training.
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Personality correlates

By far the most documented personality correlate of the experience of MECs is

openness to experience—a Big Five personality trait characteristic of individuals

who are curious, innovative, imaginative, sensitive to the arts, and who experience

a wide range of feelings and emotions (McCrae, 2007). The relationship between

MECs and openness to experience has been identified in many studies (see

Table 2.6), though it was ambiguous in some cases (Mori & Iwanaga, 2015;

Sumpf et al., 2015), and not present in others (Mathis & Han, 2017; Rickard,

2004; Starcke et al., 2019). Importantly, the NEO Personality Inventory and the

NEO Five-Factor Inventory (Costa & McCrae, 1992) used in the majority of these

studies both include an item about experiencing chills, which counts towards

openness to experience. This raises the concern that the empirical relationship

between MECs and openness to experience might be driven by the contribution

of this item towards the scale. However, this seems not to be the case, because

the item about chills is highly correlated with the sum of the remaining items on

the openness to experience scale, as shown by corrected item-total correlations

for this trait. Moreover, this analysis revealed that out of all items, the one about

chills is the most highly correlated with the rest of the scale, making it the best

cross-cultural indicator of openness to experience (McCrae, 2007). In addition,

this item was confirmed to be related to the number of MECs experienced in a

lab environment (Colver & El-Alayli, 2016). The other Big Five traits have also

been investigated, and found to predict some of the variance in the frequency

of experiencing MECs when taken together (Nusbaum & Silvia, 2011; Silvia &

Nusbaum, 2011), and individually in the case of extraversion, neuroticism, and

agreeableness (see Table 2.6), though the relationship for the latter has been

found to be both positive (Sumpf et al., 2015; Williams et al., 2018) and negative

(Maruskin et al., 2012). Agreeable individuals were also found to be more likely

to experience MECs with piloerection rather than without (Sumpf et al., 2015).

Aside from the Big Five traits, many personality factors have been investi-

gated. Experiencing MECs was found to be associated with being more observing

and judging (N. R. Harrison & Clark, 2016), less susceptible to anger (Laeng

et al., 2016), more likely to follow the music-empathising cognitive style of music

listening, which is linked with a greater focus on emotional content (Linnemann

et al., 2018), and more likely to listen to music in order to reduce negative affect

rather than to stimulate fun (Starcke et al., 2019). There are conflicting results

about the effects of reward dependence and sensitivity (Bannister, 2020c; Grewe

et al., 2007; Mori & Iwanaga, 2015, see Section 2.3.5 for the relationship between

MECs and anhedonia), thrill and adventure seeking (Grewe et al., 2007; Mathis

& Han, 2017), stylistic preference (Bannister & Eerola, 2018; Nusbaum & Silvia,
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Table 2.6: Individual differences in susceptibility to MECs

Type Characteristic Papers and findings

Demographic Gender Effect: Benedek and Kaernbach (2011), Panksepp (1995)
No effect: Bannister (2019), Grewe et al. (2007), Grewe
et al. (2009a), Guhn et al. (2007), Goldstein (1980),
N. R. Harrison and Clark (2016), Mlejnek (2013), Mori and
Iwanaga (2014b), Polo (2017), Rickard (2004), Silvia and
Nusbaum (2011), Starcke et al. (2019), Sutherland et al.
(2009), Williams et al. (2018), Zickfeld, Schubert, Seibt,
Blomster, et al. (2019)

Age Effect: Baltes, and Miu (2014), Mlejnek (2013), Williams
et al. (2018)
No effect: Grewe et al. (2009a), Mori and Iwanaga
(2014b), Starcke et al. (2019), Zickfeld, Schubert, Seibt,
Blomster, et al. (2019)

Experiential Musical
training

Effect: Beier et al. (2020), Nusbaum and Silvia (2011)
No effect: Bannister and Eerola (2018), Grewe et al.
(2009a), Guhn et al. (2007), Polo (2017), Rickard (2004)

Personality Big Five Effect: Nusbaum and Silvia (2011), Silvia and Nusbaum
(2011)

Big Five:
Openness

Effect: Bannister (2020b), Colver and El-Alayli (2016),
Maruskin et al. (2012), McCrae (2007), Mori and Iwanaga
(2015), Nusbaum and Silvia (2011), Silvia and Nusbaum
(2011), Silvia et al. (2015), Sumpf et al. (2015)
Ambiguous: Mori and Iwanaga (2015), Sumpf et al. (2015)
No effect: Mathis and Han (2017), Rickard (2004),
Starcke et al. (2019)

Big Five:
Extraversion

Effect: Maruskin et al. (2012), Rickard (2004), Sumpf et al.
(2015), Williams et al. (2018)

Big Five:
Neuroticism

Effect: Maruskin et al. (2012), Silvia et al. (2015), Sumpf
et al. (2015), Williams et al. (2018)

Big Five:
Agreeableness

Positive effect: Sumpf et al. (2015), Williams et al. (2018)
Negative effect: Maruskin et al. (2012)

Lesser-used
characteristics

See Section 2.3.7

2011), and aesthetic fluency, a measure of expertise in the arts (N. R. Harrison

& Clark, 2016; Silvia & Nusbaum, 2011), and no effects were detected for fluid

intelligence (Silvia & Nusbaum, 2011), mood (Baltes, & Miu, 2014), vividness of

visual imagery (Baltes, & Miu, 2014), or impulsive or anxious behaviour (Honda

et al., 2020).

Interestingly, when distinguishing between different categories of chills, per-

sonality correlates differ. Goosetingles have been associated with extraversion,

approach temperament, and positive emotionality, while coldshivers have been

linked with neuroticism, avoidance temperament, and negative emotionality

(Maruskin et al., 2012) Similarly, while there appears to be no effect of trait

empathy on MECs as a single construct (Baltes, & Miu, 2014; Bannister, 2020c),

empathy has been found to be associated with moving chills, but not cold or

warm chills (Bannister, 2019), echoing the results of a meta-analysis in which

trait empathic concern, associated with the state of being moved, has been linked

to chills (Zickfeld et al., 2017).
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2.3.8 Theoretical perspectives on function

The evidence reviewed so far mostly addresses what MECs are, and how they are

elicited, but there remains the broader question of why MECs occur. This final

section surveys current theoretical perspectives about their origin. Most of these

theories are expressed in terms of the evolutionary basis of chills and they tend

to overlap partially to varying degrees while also generally possessing distinctive

features. It is therefore important in the context of the present chapter to

clearly and carefully delineate these theories on the function of MECs. All of the

theories are speculative to some degree. It is because of their speculative nature

that we are closing rather than opening this chapter with these. At this point in

time, none of the theories reviewed below have sufficient experimental support to

provide a robust platform for scaffolding and interpreting the empirical literature

as a whole. However, having surveyed the existing empirical literature, there is

value in considering the extent to which empirical results to date corroborate or

refute the predictions of these theories and the experimental evidence required

for more conclusive assessment. With these goals in mind, we evaluate in this

section theories proposing that chills are associated with separation calls, the

emotional state of being moved, peak arousal, contrastive valence, and knowledge

instinct.

Separation call

The idea behind the separation call theory is that, in many animal species,

separation calls are used to motivate parents to locate their offspring who might

have become lost. According to the theory, this need for social reunion is driven

by a feeling of coldness elicited by separation calls and leading to piloerection,

potentially caused by an overlap between brain functions governing thermoreg-

ulation and social bonding, thereby providing an evolutionary explanation for

the purpose of MECs (Panksepp, 1995, 2009; Panksepp & Bernatzky, 2002).

This theory was proposed following early findings suggesting that MECs are

more likely in women, with music that is familiar, perceived as sad, and includes

high-pitched crescendi, which could be respectively accounted for by mothers

being more susceptible to separation calls, by social attachment being a learned

behaviour in mammals, by sadness due to potential loss providing the emotional

context for potential reunion, and by the acoustic characteristics of separation

calls, according to Panksepp (1995). As discussed earlier in this chapter, however,

the effects of gender, familiarity, and stimulus valence are far from clear-cut,

and the diversity in possible elicitors of MECs cannot be fully explained by a

similarity with separation calls.

Some researchers have argued that chills are indeed related to closeness and
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social bonding (Bériachvili, 2016; Bicknell, 2007; Maruskin et al., 2012; Schoeller

& Eskinazi, 2019), linked to physiological changes consistent with a state of

sadness (Benedek & Kaernbach, 2011), and that there might be an overlap

between thermoregulatory and social functions (for a brief review, see Bannister,

2019). However, critics of the separation call theory have argued that it fails to

account for the possible existence of different types of chills (Levinson, 2006; see

also Bannister, 2019; Maruskin et al., 2012) or for chills being experienced in

response to a varied range of stimuli (Bériachvili, 2016; Sachs et al., 2018), that

it is not consistent with the personality correlates of individuals most susceptible

to experiencing MECs (McCrae, 2007), that there is a lack of clarity about which

stimulus properties would reflect separation calls (Bannister, 2020b), and that

there is no evidence for the occurrence of chills in response to separation calls in

nonhuman primates (Altenmüller et al., 2013). Despite an attempt to provide

causal support (briefly described in Panksepp & Bernatzky, 2002, pp. 143–144)

for the separation call theory, it does not fully account for current findings in the

literature, and a clearer consensus for its supporting evidence would be needed

to consider this theory even as a partial, if not complete, explanation for the

occurrence of MECs.

Being moved

Other theories on the function of MECs have proposed that they are related

to the emotional state of being moved. Originating in an identified relationship

between moving music and MECs (Goldstein, 1980; Panksepp, 1995; Panksepp

& Bernatzky, 2002), the concept found itself included in the aesthetic trinity

of Konečni (2005), which comprises awe, being moved, and chills. Within the

framework of the aesthetic trinity theory, being moved is often accompanied by

chills, although both responses can occur independently, and the rarer response,

awe, is always accompanied by experiences of being moved and chills (Konečni,

2005, 2007, 2008, 2013; Konečni et al., 2007). There is empirical support for a

relationship between awe and chills (Cotter et al., 2018; Ji et al., 2019; Maruskin

et al., 2012; Quesnel & Riecke, 2018; Schurtz et al., 2012; Silvia et al., 2015),

but despite claims that experiencing aesthetic awe results from an evolutionary

process of sexual selection (Konečni, 2005), the theory fails to clearly outline

mechanisms for the occurrence of MECs (Bériachvili, 2016; Branković, 2013).

In another line of research, being moved has been included in the construct

named kama muta, which represents a positive feeling, often involving tears,

chills, and a subjective feeling of warmth in the chest, as a result of experiencing

or observing an increase in communal sharing or closeness, and is associated with

trait empathic concern (Fiske et al., 2019; T. W. Schubert et al., 2018; Seibt
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et al., 2018; Zickfeld, Schubert, Seibt, Blomster, et al., 2019; Zickfeld et al., 2017,

2019). While the experience of kama muta is not restricted to music listening,

the co-occurrence of MECs and tears, notably, is well documented in the music

psychology literature (Bannister, 2019; Cotter et al., 2018; Mori & Iwanaga,

2017; Scherer et al., 2001; Strick et al., 2015).

More generally, there have been many theoretical (e.g., Menninghaus et al.,

2015) and empirical (Bannister, 2019, 2020b; Bannister & Eerola, 2018; Benedek

& Kaernbach, 2011; Eerola et al., 2016; Panksepp, 1995; Seibt et al., 2017; Strick

et al., 2015; Vuoskoski & Eerola, 2017; Wassiliwizky, Jacobsen, et al., 2017;

Wassiliwizky, Koelsch, et al., 2017; Wassiliwizky et al., 2015; Weth et al., 2015)

associations between MECs and being moved, with additional links to liking

and perceived sadness. The aesthetic trinity and kama muta frameworks do

not propose fully-fledged mechanisms explaining the relationship between being

moved and chills, and furthermore, there is little detail about the evolutionary

mechanisms which could underlie that relationship. However, the extent of

the discourse is such that it seemed appropriate to include the emotional state

of being moved in this section, and fleshing it out in more detail should be

considered as a promising avenue for future research.

Peak arousal

Motivated by a series of empirical findings (Grewe et al., 2009a; Grewe et al.,

2007; Guhn et al., 2007; Rickard, 2004; as cited by Benedek & Kaernbach,

2011), the peak arousal hypothesis was proposed, advancing that MECs occur

when a threshold in emotional and physiological arousal is exceeded (Benedek

& Kaernbach, 2011). A closely related idea was first formulated by Blood and

Zatorre (2001), who suggested that MECs can be experienced once a certain

level of pleasure and emotional arousal is reached, and indeed, as discussed

earlier, many empirical studies have subsequently used MECs as an indicator of

pleasurable responses to music, and uncovered relationships between pleasure,

subjective arousal, and MECs.

Similarly, MECs have been shown unequivocally to be associated with physi-

ological arousal (see Section 2.3.4), but this theory posits more specifically that

MECs are indicators of peak emotional and physiological arousal. While some

studies have investigated the time-course of such peak responses, as discussed

earlier, there is a lack of agreement about their specific timing with respect

to the onset of MECs. Furthermore, little is known about whether or not

peaks of arousal or pleasure can occur in the absence of MECs, which raises

the question of whether MECs are a cause or a consequence of emotional and

physiological arousal. In their study, Benedek and Kaernbach (2011) found
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some evidence consistent with the peak arousal hypothesis, but also suggested

that rapid, shallow breathing during chills is required to further support the

hypothesis. Such breathing patterns were not observed in their study, or in most

studies of respiration rate and depth during experiences of MECs. Overall, the

empirical data available to date do not clearly support or refute the peak arousal

hypothesis, and further systematic study is needed in order to fully examine the

time-course of emotional and physiological arousal, as well as pleasure, in the

presence and absence of MECs.

Contrastive valence

It has also been proposed that MECs can be caused by musical expectations,

most notably through a process called contrastive valence. This process relies on

ITPRA, a theory of expectation proposed by Huron (2006), according to which

responses to a situation are separated into imagination and tension, its pre-

outcome components, and prediction, reaction, and appraisal, its post-outcome

components. When listening to music, MECs are thought to occur when a rapid,

unconscious fear response due to an unexpected outcome causes piloerection,

which is subsequently followed by a neutral or positive conscious appraisal

of musical sounds as a safe stimulus, leading to pleasure due to the positive

contrast in valence between these two responses (Huron, 2006; Huron & Margulis,

2010). According to the theory, pleasurable chills in response to an unexpected

outcome, musical or not, reflect an exaptation of vestigial thermoregulation and

intimidation responses, drawing their adaptive value from promoting attention

and information processing, rewarding and reinforcing learning when faced with

inaccurate predictions, facilitating memory formation, and driving curiosity to

detect new, surprising patterns, through the recruitment of the dopaminergic

reward system, in order to promote more effective decision making, thereby

leading to positive future outcomes (Altenmüller et al., 2013; Cantor, 2019;

Grewe et al., 2007; Huron, 2006; Huron & Margulis, 2010; Maruskin et al.,

2012; Wassiliwizky, Koelsch, et al., 2017). Although, following Huron (2006), we

focus here on contrastive valence, we believe this causal explanation for MECs is

potentially also compatible with other theories on the psychological mechanisms

underlying the effects of expectation on emotion and pleasure, including theories

invoking tension and resolution (Meyer, 1956), and learning progress (Gold et al.,

2019).

As discussed previously, many empirical findings are consistent with a role of

schematic and veridical expectation in the experience of MECs. There are also

distinct subjective, physiological, and neural differences between pre-outcome

and post-outcome reactions when experiencing MECs (Bannister & Eerola,
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2018; Grewe et al., 2009a; Salimpoor et al., 2011; Wassiliwizky, Koelsch, et al.,

2017), but these findings lack the temporal precision to fully support the exact

time-course proposed by the ITPRA theory. In addition, while the relationship

between expectation and pleasure has been explicitly investigated (Cheung et

al., 2019; Gold et al., 2019), comparable studies have yet to be conducted on

the relationship between expectation and MECs. Critics of the theory argue

that the lack of a universal stimulus-response pattern for MECs renders fear

unlikely to be the primary evolutionary cause of MECs (Bannister, 2020b; Grewe

et al., 2007; Nagel et al., 2008). However, this fails to account for the fact

that different individuals can experience fear in response to different stimuli,

based on experience and circumstances. Moreover, if expectation is involved, we

would expect to see individual differences due to stylistic enculturation (Pearce,

2018; and for partial support of an effect of stylistic knowledge, see Beier et al.,

2020). As with the other theories reviewed so far, however, contrastive valence

doesn’t fully account for the experience of MECs, notably by failing to provide an

explanation for MECs caused by the emotional expressiveness of music (Levinson,

2006) and emotional elicitors.

Related to a fear-based response due to expectation mechanisms, it has

recently been proposed that auditory looming is a possible cause of MECs,

presumably reflecting an adaptive need to perceive and signal an approaching

threat (Bannister, 2019, 2020c; Bannister & Eerola, 2018). This theory, linked to

the role of vigilance in expectation (Huron, 2006), could explain how crescendi

and sudden increases in loudness might cause MECs, and has received recent

support from an experiment showing that manipulating loudness affects the

occurrence of MECs (Bannister, 2020c). However, the auditory looming theory

does not naturally explain the pleasure often associated with MECs, and it

remains to be determined whether or not this can be attributed to contrastive

valence.

Knowledge instinct

According to the knowledge instinct theory (see Schoeller, Perlovsky, & Arseniev,

2018), humans are driven to learn by modifying mental representations in order

to match patterns in perceived stimuli. Knowledge acquisition consists of the

creation and improvement of these representations, and knowledge instinct is

the fundamental motivation for knowledge acquisition. Emotions arise from

satisfaction or dissatisfaction of knowledge instinct, or in other words, from the

congruence or incongruence between bottom-up sensory signals and top-down

mental models. Positive aesthetic emotions occur when congruence remains

high, and when content at the top of the cognitive hierarchy is engaged, possibly
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resulting in chills and experiences of the sublime (Schoeller, Eskinazi, & Garreau,

2018; Schoeller & Perlovsky, 2016; Schoeller, Perlovsky, & Arseniev, 2018). In

other words, chills can occur if stimuli that are relevant to important abstract

concepts, such as meaning, are accurately predicted and understood. This theory

has also been expressed in terms of an interaction between environment and

encoded schema (Pelowski et al., 2017; Pelowski et al., 2018).

While this theory could account for the relationship between MECs and

the perception of meaning, and has received tentative support from the effect

of the coherence of a priming statement on subsequent experiences of chills

when watching video clips (Schoeller, 2015; Schoeller, Eskinazi, & Garreau,

2018; Schoeller & Perlovsky, 2016), empirical corroboration remains limited due

to a relative lack of diversity in the supporting evidence and the difficulty of

deriving specific predictions from the theory about the precise timing of chills.

Furthermore, the theory is ambiguous about whether chills occur when learning

is required or when it is unnecessary (Pelowski et al., 2018), therefore making it

unclear how to reconcile the theory with findings showing that MECs occur in

response to unexpected musical events.

2.4 Discussion

We have conducted a systematic and critical review of the current literature

on MECs, with the purpose of establishing a solid basis for future research. In

this discussion, we first summarise each category of findings presented above,

before integrating these findings in order to address the questions raised in the

introduction. We then explore limitations of the reviewed research and of the

present chapter, before providing a preliminary model of MECs and introducing

a dataset listing pieces of music reported to elicit MECs in the reviewed literature.

Finally, we outline a set of open issues, hypotheses, and recommendations for

future research.

2.4.1 Summary of findings

Context

Most of the empirical work reviewed in Section 2.3.1 relies on the analysis of

self-reports, and on a certain degree of subjective input from the researchers

when it comes to interpreting and naming overarching categories and underlying

factors. Taken together, however, these results suggest that, while MECs are

a complex psychological construct, most of the population experiences them

regularly, although not necessarily very frequently. MECs might comprise several

psychologically distinct phenomena, are thought to be related to emotional and
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aesthetic experiences, and to involve a bodily sensation, which most often origi-

nates in the head, neck, back, or arms, and can include piloerection. Establishing

a clear and consistent conceptual understanding of what exactly is being studied

when researching MECs is a critical issue, and the research reviewed in that

section provides a necessary first step in building such a framework.

Emotion and aesthetics

The relationship between MECs, emotions, and aesthetics is complex. The

purpose of Section 2.3.2 was not to provide a comprehensive review of the

literature on emotion and aesthetics, but rather to situate MECs within well-

established frameworks of aesthetic and emotional responses to music, which are

widely—though not always universally—accepted. From the evidence reviewed

in that section, we conclude that MECs are a pleasurable psychophysiological

response to music, and a possible, though not essential, component of emotional

and aesthetic experiences of music. This makes them unsuitable as the sole

indicator of such experiences, but if used in conjunction with self-reports, they

provide attractive properties from an experimental point of view, because they

are pleasurable, widespread, stable, memorable, discrete, and when accompanied

by piloerection, objectively observable (Brattico & Pearce, 2013; Brattico &

Varankaitė, 2019; Grewe et al., 2009b; McDermott, 2012; Sloboda, 1991; Stark

et al., 2018; Vuust & Kringelbach, 2010; Zatorre, 2003).

Measures and paradigms

In Section 2.3.3, we found that self-reports and objective measures both provide

distinct advantages, but also have their drawbacks. With self-report measures

arise the issue of demand characteristics, through which the behaviour of partici-

pants can be influenced by the information they can infer about the experimental

hypothesis (Juslin, 2016; Orne, 1962). Moreover, self-report measures are also

subject to self-presentation biases and limited awareness of felt emotions, and

providing them continuously or retrospectively can respectively cause issues with

distraction or reliability (Zentner & Eerola, 2010). These problems do not arise

with objective measures, but in the case of research on MECs, such measures are

currently limited to the detection of piloerection, which does not encompass the

entirety of the experience of MECs (see Section 2.3.1), potentially leading to in-

creased type II error rates. Many studies have combined methodologies, thereby

combining the complementary advantages of subjective and objective measures,

and we advocate this approach in future research. In terms of paradigms, causal

approaches have gained traction. They are crucial if we are to gain a better

understanding of the causes of MECs, and should be used whenever possible in
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future research, along with naturalistic listening experiences to increase ecologi-

cal validity (see Chabin et al., 2020; Eerola, 2018; Hargreaves & North, 2010;

Hodges, 2016), longitudinal designs to study how experiences of MECs change

over time (see Greasley & Lamont, 2016), and cross-cultural approaches to avoid

an over-representation of classical music and Western participants, as is currently

the case in research on MECs (see L. Harrison & Loui, 2014).

Physiological correlates

In Section 2.3.4, we found that MECs are associated with many physiological

changes, and most often with increases in skin conductance response, heart rate,

and respiration rate. However, for more ambiguous findings, the quality of the

reviewed evidence must also be taken into account (Koelsch & Jäncke, 2015).

Some studies systematically compared physiological responses in the presence

or absence of MECs (e.g., Benedek & Kaernbach, 2011; Craig, 2005; Grewe

et al., 2011; Grewe et al., 2009a; Guhn et al., 2007; Mas-Herrero et al., 2014;

Mori & Iwanaga, 2017; Salimpoor et al., 2009; Sumpf et al., 2015), while other

studies were correlational in nature, or compared averaged responses at the

song level rather than continuous responses at precise moments in time (e.g.,

Baltes, et al., 2011; Carr & Rickard, 2016; Jaimovich et al., 2013; Rickard, 2004;

Salimpoor et al., 2011; Schäfer & Sedlmeier, 2011). Due to these differences

in experimental design, greater weight should be given to findings about the

presence of effects for skin conductance level and heart rate, and the absence of

an effect for respiration rate. However, these studies are still limited by a lack of

replication using different methodological approaches.

More generally, the reviewed evidence is consistent with increases in self-

reported arousal when experiencing MECs (Baltes, et al., 2011; Carr & Rickard,

2016; Grewe et al., 2009a; Mori & Iwanaga, 2015, 2017; Sumpf et al., 2015).

However, the time course of physiological responses associated with MECs

remains unclear, with changes in physiological arousal either preceding, co-

occurring with, or following MECs, making it difficult to assess whether arousal

is a cause or a consequence of MECs, or simply a co-occurring phenomenon.

Physiological measures are sometimes thought to be relatively non-specific, and

only indicative of a general state of arousal (Larsen et al., 2008; Panksepp &

Bernatzky, 2002), but there is actually some degree of physiological response

specificity, allowing particular response patterns to be associated with discrete

emotional states (Hodges, 2016; Kreibig, 2010). Further research using a wider

range of physiological responses could help identify which emotions are most

closely related to MECs.
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Neural correlates

In Section 2.3.5, we found that MECs involve the recruitment of brain structures

associated with emotion, reward, pleasure, reinforcement, motivation, arousal,

and motor processes (Blood & Zatorre, 2001; Brattico et al., 2009; Chanda

& Levitin, 2013; Vuust & Kringelbach, 2010), and display activation patterns

consistent with the reward experienced in response to food, sex, and drugs,

notably through the involvement of dopaminergic and opioid systems (Blood

& Zatorre, 2001; Chanda & Levitin, 2013; Mallik et al., 2017; Zatorre, 2003).

Additionally, evidence suggests that individual differences in the experience of

MECs might be due, in part, to differences in white matter connectivity between

auditory and reward systems (Brattico, 2019; Hernández et al., 2019; Loui et al.,

2017; Sachs et al., 2016).

Limitations of this body of work include poor generalisability due to small

sample sizes and participants sometimes being selected for their ability to reliably

experience MECs (e.g., Blood & Zatorre, 2001; Salimpoor et al., 2011), the poor

time resolution of positron emission tomography, used in the study by Salimpoor

et al. (2011), resulting in uncertainty about the precise timing of dopamine

release (Habibi & Damasio, 2014; Vuust & Kringelbach, 2010), and finally,

reliance on drawing reverse inferences about psychological mechanisms from

observations of activation in brain areas subserving a broad range of psychological

functions (Konečni, 2005; Logothetis, 2008; Poldrack, 2011). Overall, however,

the consistency of the findings across a broad range of methods (neuroimaging,

neurochemical, and lesion studies) provides strong support for the involvement

of limbic and reward-related brain regions during MECs. A challenge for future

research will be to understand if there are any patterns of neural activation

which distinguish MECs from other instances of reward and pleasure.

Elicitors

Some authors have reported a lack of clear stimulus-response pattern with the

experience of MECs (Bannister, 2020b; Grewe et al., 2007; Nagel et al., 2008),

and while it is certainly true that a specific musical passage does not reliably

cause MECs for all people (see Section 2.3.3), the evidence reviewed in the

sixth section strongly points towards a set of acoustic, musical, and emotional

elicitors being involved in the experience of MECs, including dynamic changes,

increased roughness, crescendi, unexpected structural changes, textural changes,

and perceived emotionality. Through underlying mechanisms, such as brain stem

reflex and expectation, and associated factors, such as attention and familiarity,

it is likely that, as is the case with aesthetic and emotional responses to music

(Gabrielsson, 2011; Hargreaves, 2012; Juslin, 2013; Juslin & Västfjäll, 2008;
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Scherer et al., 2001), MECs rely on an interaction between listener, context

(about which there is currently relatively little research), and music. Importantly,

most of the research discussed in Section 2.3.6 relies on correlational evidence,

which weakens its strength. However, efforts have been made in recent research to

use systematic manipulations in order to establish causality, confirming loudness

and textural changes as elicitors of chills, for instance, and therefore resulting in

a more robust understanding of the causes of MECs.

Individual differences

In Section 2.3.7, we found that in general, evidence for the influence of individual

differences on the experience of MECs is mixed. This might be a consequence of

most of these individual differences being studied in the context of exploratory

research with little theoretical basis, with the exception of some of the Big

Five personality traits (including openness to experience), as well as reward

sensitivity, stylistic preference, and trait empathy. Regardless, from the totality

of the evidence reviewed, it is now well established that openness to experience

plays a role, and in more general terms, that personality differences affect

who experiences MECs, and how often they are experienced. This should be

taken into consideration when researching MECs, because individuals might

react differently to various experimental situations, based on their personality

characteristics.

Theoretical perspectives on function

At present, the theoretical accounts for MECs reviewed in Section 2.3.8 lag be-

hind the empirical evidence in terms of their breadth, depth, degree of empirical

corroboration, and ability to make clear and distinctive empirical predictions.

Considering the diversity of empirical findings about MECs, it seems increas-

ingly unlikely that a single functional mechanism could provide an adequate

explanation for why they occur. There is currently little empirical evidence

that specifically supports the separation call and knowledge instinct theories.

Taken together, however, contrastive valence, peak arousal and pleasure, and

the emotional state of being moved could account for much of the empirical

evidence. It therefore seems plausible that competing theories based on evolu-

tionary expectation and social processes might together explain the diversity in

elicitors and personality characteristics involved in the experience of MECs (see

Bannister, 2019).

It is worth emphasising again that all the theories on the function of MECs

reviewed here are speculative, and would greatly benefit from the use of cross-

cultural (see Beier et al., 2020), and developmental research, both of which (and

61



ideally in combination) would provide evidence regarding the role of culturally-

embedded learning in determining the elicitors and experience of MECs, as well

as any potential evolutionary basis for their existence. In addition, hypothesis-

based experiments testing the concrete predictions of the most promising theories

are needed for further corroboration. In particular, the individual theories make

different predictions about the psychological circumstances in which MECs would

be experienced—during an experience of being moved (due to social closeness

and empathy), during an experience of contrastive valence or auditory looming,

or during an experience of high levels of emotional arousal or pleasure. Empirical

experiments that test these predictions against one another are necessary to

provide further clarity on the theoretical basis of MECs. Again, we would em-

phasise that it seems very possible that more than one psychological mechanism

will be required to account for different kinds of chills.

2.4.2 Integration of findings

In this section, we integrate and expand upon the main findings from the reviewed

literature in order to address the important questions raised in the introduction.

First, MECs seem to be relatively universal, as they are experienced by up

to 90% of the surveyed population. However, while they are experienced with

some degree of regularity, they remain a rare occurrence, with gaps between

MECs sometimes reaching weeks or months for some people. This has no bearing

on whether or not these experiences are meaningful to those who experience

them, but it raises questions about their suitability for empirical research on

emotional and aesthetic responses to music. Indeed, even though MECs are

pleasurable, if they are rarely experienced, they are unlikely to provide a full

picture of the aesthetic experience of music. Moreover, the fact that MECs are

experienced by a smaller proportion of the population in experimental settings

suggests that such settings may be inappropriate for the study of the entire

range of aesthetic responses to music. However, the fact remains that MECs

are pleasurable, and that despite their relatively sparse occurrence, they do

reliably occur in experimental settings and are arguably the most convenient,

objectively observable empirical measure of pleasure experienced in response

to music listening. As long as care is taken not to place undue focus on MECs

being representative of all aesthetic responses to music, we believe that they are

worthy of scientific inquiry and have the potential to reveal much about how

music is processed and about music appreciation.

Second, we argued that while MECs exhibit some characteristics consistent

with emotional responses, the lack of clear motor expression and action tendency

suggests that they should not be considered as an emotional state per se. This
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argument could reasonably be debated. Brain structures associated with motor

processes are recruited during MECs, possibly suggesting preparedness for singing

and dancing (Brattico & Pearce, 2013), and to our knowledge, there has been

no investigation of facial muscle activation in MECs. Moreover, a possible

action tendency exhibited by MECs could consist of a focus of attention towards

aesthetic stimuli. It could therefore be argued that MECs are indeed an emotional

reaction, or at least, the manifestation of an extreme emotional reaction. While

we are inclined to consider MECs as a psychophysiological response which can

form part of a range of emotional states, further research is needed to establish

the precise relationship between MECs and emotions. Regarding the relationship

between MECs and aesthetic responses, the evidence strongly suggests that

MECs are perceived as pleasurable. While there are reports of displeasurable

chills, they tend to occur in reaction to non-musical stimuli, and we therefore

surmise that most, if not all, MECs are pleasurable, possibly because music

listening itself is generally a pleasurable activity. However, MECs are often used

as an empirical indicator of peak pleasure, despite there being relatively little

evidence in support of this claim. In our opinion, conflating MECs and peak

pleasure misrepresents the relevance of MECs to research on music emotion

and aesthetics. We believe that research on MECs contributes usefully to the

literature on emotional and aesthetic responses to music, as long as MECs are

not considered as fully fledged emotional and aesthetic responses, but rather as

non-obligatory but enhancing components of these responses.

Third, we reviewed two articles which suggest that chills represent a collection

of phenomenologically and psychologically distinct experiences. These are, to our

knowledge, the only contributions studying this question from an empirical point

of view. However, it is worth emphasising that in both cases, several stimulus

modalities were investigated, as opposed to music only, and it is not yet known

whether or not MECs specifically are a multi-faceted phenomenon as well. We

believe it is likely that MECs can arise from different combinations of elicitors

and associated underlying mechanisms, which could be explained by different

theories on the function of MECs, but it remains to be determined whether

these would lead to different types of MECs, or to the same psychophysiological

response in all cases. The implications for past and future research on MECs

are considerable, because failing to distinguish between different types of MECs

could lead to null, conflicting, or misleading empirical findings. We therefore

believe that investigating this question should be a priority for research on MECs.

Fourth, the evidence suggests that there are great similarities between the

physiological and neural correlates of MECs and pleasurable responses to music

in the absence of MECs (see Archie et al., 2013; Koelsch, 2010, 2014; Salimpoor

et al., 2011), and that so far, there does not seem to be any physiological or
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neural signature setting these two responses apart. This is due to the fact that,

as discussed above, MECs and pleasure are tightly coupled. There have been

no studies investigating this specific issue, so for the moment being, the only

available evidence relies on drawing inferences from tangential findings. In a

lesion study (Grunkina et al., 2017) and in a study about anhedonia (Mas-Herrero

et al., 2014), there have been reports of participants experiencing MECs with

an impaired ability to experience pleasure, which would suggest that these two

responses are not always associated. However, in both cases, it is not possible to

establish if these participants had the ability to experience some residual degree

of pleasure. It is therefore not currently possible to establish whether MECs

invoke general-purpose mechanisms involved in emotional processing and reward,

or dedicated neural and physiological machinery instead. We suspect that there

are specific neural and physiological signatures for MECs, but that they will only

be uncovered in a systematic empirical comparison between MECs and other

highly pleasurable experiences of music.

Finally, while we have already discussed causes of MECs in this chapter,

it is worth integrating the evidence on their elicitors, individual differences,

and origins. The evidence suggests that while MECs are idiosyncratic to some

extent, stimulus-driven characteristics, such as changes in loudness, crescendi, or

emotionality, strongly drive their occurrence. In terms of individual differences,

there was no clear effect of age, gender, or musical training, but we believe

individual differences should not be dismissed just yet. If expectation is involved

in MECs, there could be an effect of musical training, since musicians tend

to develop more precise expectations (Hansen & Pearce, 2014; Hansen et al.,

2016; Quiroga-Martinez et al., 2019), or an effect of individual differences in

music perception abilities. Openness to experience was identified as strongly

associated with MECs. This personality trait is associated with preference for

sophisticated, intense, and mellow music (Schäfer & Mehlhorn, 2017), which

could imply that individuals with high scores on openness to experience seek out

music which features violations of expectation or high emotionality. In terms of

theoretical accounts of the function of MECs, the approaches most consistent

with the available evidence are that MECs occur because of the emotional state

of being moved, peak arousal, or contrastive valence. Further research is needed

to test these theories against one another. However, it is also possible that all

these theories account for different aspects of MECs. As discussed above, we

speculate that, regardless of whether there exist different types of MECs or not,

it is possible that there are different causes of MECs. For instance, acoustic

elicitors could engage the mechanism of brain stem reflex, causing MECs through

peak arousal, the function of which is perhaps associated to a need to maintain

homeostatic balance. Musical elicitors could engage musical expectation, causing
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MECs through the evolutionary fear-based process of contrastive valence. And

finally, emotional elicitors could engage the mechanism of emotional contagion,

causing MECs through the evolutionary social process of being moved. This

would signify that MECs rely on an interaction between listener, context, and

music, which is itself driven by psychological mechanisms of emotional responses

to music and evolutionary reasons for the function of MECs.

2.4.3 Limitations

In this section, we provide a broad overview of the quality of the reviewed

research, as well as a discussion of the limitations of the present chapter.

Due to the breadth of topics (see Section 2.2) and wide range of study designs

(see Table 2.2) in the research covered in this chapter, it is difficult to provide an

effective summary of research quality. It is however possible to highlight common

pitfalls and notable exceptions in terms of methodological issues. First, there

is the issue of validity and reliability of measures of MECs. As noted earlier,

there is currently a trade-off between validity and reliability. When tested,

the Goosecam accurately identified each occurrence of piloerection (Benedek

et al., 2010), and can therefore be considered as reliable, but since MECs do

not consist of piloerection only, it could be argued that the Goosecam and other

objective measures are not comprehensively valid measures of MECs. Inversely,

self-reported measures are inherently more valid (although this depends to some

extent on the definition of MECs provided to the participants in a given study),

but they are less reliable due to potential interference from demand characteristics,

self-presentation biases, limited awareness of felt emotions, distraction, or the

retrospective nature of self-reports. This leads to limitations in the present

chapter, since it is difficult to assess if it is indeed MECs that were investigated

in all of the reviewed research, and if all MECs were reported by participants in

said research. Issues of validity and reliability are crucial to research on MECs,

and while combining objective measures and self-reports can address some of

these issues for the time being, it is hoped that future research will identify

better measures of MECs.

Then, there is the issue of methodological quality and risks of bias. Despite a

long history, research on MECs is still in its exploratory stage. There is currently

a lack of underlying theoretical framework for hypothesis-based research, leading

to large disparities in terms of research methods, and therefore preventing their

implementation details (and by extension, their risks of bias) from being system-

atically compared across studies. This lack of consistency is also what makes a

meta-analysis of some facets of research on MECs currently difficult, if not impos-

sible. For instance, in the first sections of the present chapter, many qualitative
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studies were discussed. On the one hand, broad preliminary investigations of

emotional responses to music featured MECs as a component reported by some

participants (e.g., Panzarella, 1980; Scherer et al., 2001; Sloboda, 1991), and were

often characterised by the recruitment of non-representative convenience samples,

high attrition rates, and coding of qualitative data by a single researcher. On the

other hand, purposeful investigations of chills as a psychological construct (e.g.,

Bannister, 2020b; Maruskin et al., 2012) benefited from exhaustive and transpar-

ent methodologies, attempts to recruit large and more representative samples of

the population, and explicit investigations of inter-rater reliability. Similarly, in

the reviewed quantitative research, methods diverged widely, with the majority

consisting of some form of cross-sectional study (see Table 2.2). There were a few

double-blind, randomised studies (e.g., Ferreri et al., 2019; Goldstein, 1980) with

very large disparities in terms of transparency of research methods and statistical

analyses, resulting in limited reproducibility for Goldstein’s (1980) study. In

many cases, participants were exposed to many conditions, and while single

blinding was attempted in most cases and is certainly possible to some extent, it

is likely that the participants could infer the hypothesis at hand. For instance,

if participants are asked to report MECs in response to music they brought

with them as opposed to unfamiliar music, it is reasonable to assume that the

participants might have guessed that they should experience more MECs when

listening to their own music. This lack of effective single blinding, along with

the absence of researcher blinding in most cases, most likely resulted in some

degree of response and experimenter bias in many of the reviewed studies. In

addition, many quantitative studies involved the participation of undergraduate

populations with an over-representation of musically trained individuals, were

not clearly hypothesis-driven, and did not feature power calculations or report

effect sizes. The combination of these factors affects the quality of the evidence

in the present chapter, making it difficult to assess the relative strength of the

reviewed evidence and the extent of the presence of specific biases. While there

is a distinct trend favouring more controlled experimental approaches in recent

years, much remains to be done in terms of adopting best scientific practices.

This is expected to some extent from an area of study which is still in the process

of establishing a theory-grounded research agenda, but it is hoped that the

present thesis will provide substantial impetus in that direction as research on

MECs matures.

Finally, in addition to the limitations already presented in this section,

the methodology of the present chapter also suffered from some limitations.

First, while contributions in languages other than English were considered for

inclusion in this review, databases were only searched using English terms. These

search terms did yield some research written in other languages, and we are
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not aware of any additional such literature, so we suspect that it would not

be extensive. If any does exist, it could have influenced the findings of the

present review to some extent, perhaps due to different stylistic enculturation

leading to different expectations in participants in such research, or to different

perceptions of meaning in pieces of music, for instance. We suspect, however,

that such differences would most likely be small if not completely absent, since

we already know that people from different cultures can experience MECs (Beier

et al., 2020), and that music from many genres and countries of origin can cause

MECs (see dataset in Section 2.4.4). Second, while publication bias is most

likely present, it is difficult to assess its extent in research on MECs due to

the relative lack of availability of unpublished research on the topic. While

meta-analytic methods such as funnel plots could help investigate publication

bias, they were not suitable for the present chapter due to the need to encompass

the great diversity of topics and methods in research on MECs. Publication bias

increases the risk of drawing false conclusions (type I errors in particular), but

we estimate that risk to be limited in this case, because most of the reviewed

research is exploratory, therefore leading to the reporting of many positive and

negative findings within individual papers. However, future research should seek

to limit publication bias by using more specific definitions of MECs, testing fewer

but more hypothesis-driven relationships, pre-registering research protocols,

conducting better-powered studies, and harmonising research designs across

studies. Third, no formal coding of relevant research insights was conducted

due to the variety and complexity of empirical findings, opening the possibility

for some degree of researcher bias, and therefore increasing the risk of drawing

false conclusions. Overall, however, we believe these limitations were necessary

in order to allow broad and integrative coverage of empirical and theoretical

research on MECs. As a result, the risks of bias are balanced by the fact that we

do not consider the outcome of the present review a finalised theory of MECs,

but rather a framework for future hypothesis-driven research.

2.4.4 Framework for future research

We conclude this chapter by providing a tentative, preliminary framework for

future research on MECs. We begin with a set of minimum criteria for a response

to music to be considered as MECs. We then provide a model of MECs based on

the reviewed literature and a dataset of pieces of music known to cause MECs,

before delineating open issues, hypotheses, and recommended approaches.
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Criteria for MECs

We provide here a preliminary set of minimum criteria for MECs. These criteria

rely, in part, on our current interpretation of the strength of the available

evidence, and will certainly be subject to change as research on MECs progresses.

They are also conservative, only including criteria which the evidence suggests

are almost certainly associated with MECs, but not criteria based on other

findings which have yet to produce consensus.

We argue that, for a typical individual’s response to music to be categorised

as MECs, this response should be a sudden, fleeting, and pleasurable psychophys-

iological reaction to music-driven properties (whether they are acoustic, musical,

or emotional), most commonly originating from the head, neck, back, or arms.

Its occurrence should be possible in a large proportion of the population, and

particularly in individuals with high openness to experience. It should involve

increases in subjective arousal, skin conductance response, and heart rate, as

well as limbic and reward-related neural activity. This response might but does

not necessarily involve piloerection, and forms part of an emotional or aesthetic

experience of music, though emotional or aesthetic experiences of music need

not necessarily involve this response.

Model of MECs

The criteria presented above are integrated with the rest of the literature in a

preliminary model of the experience of MECs, in order to provide a framework

which will allow the formulation of hypotheses for future research on MECs.

This model is not exhaustive, but it includes a range of parameters, mechanisms,

and response attributes we believe to be the most relevant to future investigation

of MECs.

The model is presented in Figure 2.2. Parameters represent the interaction

between listener, music, and context that is most likely involved in MECs. This

aggregation of parameters gives rise to the response of MECs, through the

combination of the psychological and evolutionary mechanisms we identified

as the most likely to underlie MECs. We included elements which lack full

empirical verification, but which, in our view, represent important open issues

in research on MECs, such as the effect of attention, the exact nature of the

psychological mechanisms which lead to MECs, or the extent of the relationship

between aesthetic and emotional responses and MECs. A distinguishing feature

of this model is that it also groups phenomena which we believe could be related

across categories, and could provide different pathways for the experience of

MECs, if not different types of MECs. For instance, it could be that individuals

with high trait empathy, perceiving emotional elicitors when listening to music,
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Figure 2.2: Preliminary model of MECs. Parameters on the left represent
factors which influence the response of MECs on the right, via psychological and
evolutionary mechanisms in the middle. Diagonal arrows represent increases in
the associated response. Sentences in italics represent definitions for the listed
mechanisms. Question marks represent open questions which lack empirical
corroboration. The term “etc.” indicates categories for which future evidence
or replication of current evidence may warrant the addition of further entries.
Symbols link together phenomena which could be related, and could contribute
to distinct experiences of MECs.

mimic the perceived emotion through emotional contagion, leading to MECs (or

even to a distinct type of emotion-induced MECs) through the process of being

moved. While such predictions are preliminary, they integrate existing findings,

highlight important open issues, and allow the formulation of new hypotheses,

providing a path towards a better understanding of MECs.

Dataset of MECs

Empirical studies of music-evoked emotions most often feature stimuli pertaining

to MECs (Warrenburg, 2020), such that a large quantity of music which can

cause MECs has been documented in the academic literature on MECs. With

the aim of facilitating more integrated research on MECs, we have compiled

Chills in Music (ChiM), a dataset which contains, to our knowledge, all pieces

of music which have been reported to elicit MECs in the literature reviewed in

the present chapter2. Details about the preparation of ChiM are available in

Chapter 4. It should be noted that the dataset contains little information about

the timing of MECs in most pieces of music, due to limited information in the

2ChiM is available at https://doi.org/10.17605/osf.io/uyg7m.
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reviewed literature. Efforts should be expanded to augment ChiM with precise

timing information, in order to support future computational research on MECs.

Open issues and recommendations

In this section, we highlight open issues in the literature on MECs, based on the

reviewed literature and on the preliminary model presented above. In our view,

investigating these issues has the most potential to advance research on MECs.

Throughout this systematic review, we also identified significant methodological

shortcomings regarding research design, adequacy of experimental variables,

measures of MECs, and terminology. We provide suggestions for addressing

these shortcomings below.

Table 2.7 lists what we consider to be the most important open issues in

the available evidence on MECs, along with hypotheses and recommended

experimental approaches. While all these issues are derived from the model

of MECs we provided, we make a distinction between issues arising from the

reviewed literature, and specific predictions arising from the proposed model.

Throughout this chapter, we have provided methodological recommendations

to address shortcomings in the research on MECs. Notably, we recommended

that piloerection should not be used as the sole indicator of MECs, that MECs

should not be used as the sole indicator of emotional and aesthetic responses,

and that individual differences should be taken into account, particularly because

chills could be a multi-faceted phenomenon, which could lead to null, conflicting,

or misleading results if this is not taken into consideration. We argued that a

combination of self-reports and objective measures are currently best suited for

the study of MECs, and that care should be taken when validating self-reports

of MECs with skin conductance response. Finally, we recommended the use

of the terms chills and piloerection, and suggest a definition for participants

in research on MECs, characterising MECs as a fleeting, pleasurable bodily

sensation, sometimes accompanied by goosebumps, experienced when listening

to specific musical passages.

2.4.5 Conclusion

We conducted a systematic review of the literature on MECs. Theoretical and

empirical findings were integrated, leading to the conclusion that MECs are a

prevalent psychophysiological response which can include piloerection, and a

pleasurable, though not essential, component of emotional and aesthetic experi-

ences. They have been studied using both subjective and objective measures,

with a recent focus on causal approaches—a necessary endeavour due to most

of the evidence being correlational in nature, and therefore often difficult to
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Table 2.7: Open issues, hypotheses, and suggested approaches

Open
issue

Hypothesis Suggested approach

Universality
of chills

MECs are experienced by
the same proportion of the
population, regardless of
culture, but are dependent
on enculturation.

Conduct a large-scale, cross-cultural survey of MECs, recording
information about exposure to various musical cultures and
genres.

Occurrence
of piloerec-
tion

Piloerection occurs once
MECs exceed an intensity
threshold.

Record self-reported intensity of MECs and compare to
measured piloerection. This might require further validation or
development of piloerection sensors.

Specificity
of MECs

MECs exhibit different
physiological and neural
signatures than those of
emotion or pleasure.

Compare responses with self-selected music that can elicit
distinct experiences of MECs, emotion, and pleasure. If there is
specificity, a classifier could be trained to distinguish unlabelled
instances of MECs from emotional and pleasurable episodes
without MECs.

Acoustic
and
musical
elicitors

The effect of acoustic
elicitors on MECs is
partially mediated by
musical elicitors, and vice
versa.

Compare extracted acoustic and musical features (using music
information retrieval and/or manual annotation) around the
onset of MECs (using a dataset such as the one provided in this
review). Alternatively, systematically manipulate stimuli to
independently vary the two types of elicitors and compare
occurrences of MECs.

Familiarity MECs are experienced more
frequently as familiarity
increases.

Use a longitudinal design to study the progress of the frequency
of MECs when repeatedly exposed to previously unfamiliar and
familiar music with the potential to elicit MECs.

MECs and
attention

Attending to music
increases the likelihood of
MECs occurring, and MECs
focus attention towards the
eliciting music.

Assess the occurrence of MECs at rest and during a non-musical
distractor task while listening to music. Fewer MECs should
occur while distracted, and if they occur, they should impair
performance on the task.

Psychological
mecha-
nisms

Exploratory animal and
developmental research can
help pinpoint the
psychological and neural
mechanisms underlying
MECs.

Since brain stem reflex, musical expectation, and emotional
contagion rely on different psychological and neural mechanisms,
which might be more or less well developed in different species
and at different developmental stages, exploring the prevalence
of MECs in animals and individuals varying in developmental
age could shed light on the mechanisms underlying MECs, and
identify developmental trajectories.

Peak
arousal

MECs can occur in
response to peaks in
arousal or pleasure, but
might not always since
several mechanisms drive
the occurrence of MECs.

Record measures of physiological arousal for a large number of
MECs to identify a threshold for peak arousal or subjective
pleasure. MECs should happen every time this threshold is
exceeded, but could also happen below this threshold if elicited
by a different mechanism.

Musical ex-
pectation

MECs can occur in response
to violations of expectation,
but might not always since
several mechanisms drive
the occurrence of MECs.

Collect precise timing information for when MECs occur (or use
the dataset provided in this review), and compare them to the
output from a computational model of expectation. MECs
should always occur for sufficiently strong violations of
expectation but might occur elsewhere if elicited by a different
mechanism.

Evolutionary
mecha-
nisms*

MECs can occur via either
peak arousal, contrastive
valence, or the process of
being moved.

Carefully prepare stimuli with the potential to elicit MECs via
these three mechanisms, controlling for the others, and collect
continuous measures (for instance, the two measures detailed
above for peak arousal and expectation, and self-reports for
being moved). Peaks for each measure should correspond to the
onset of MECs for each targeted mechanism.

Listener
and
context*

Susceptibility to MECs
caused via different
mechanisms is partly
governed by individual
differences, familiarity, and
stylistic knowledge.

Using the approach detailed above, compare individual
differences and personality correlates across participants who
reported the most MECs for each mechanism. Include familiarity
and stylistic knowledge for each piece of music as a random
effect in a mixed effect model.

Distinct
types of
MECs*

Different parameters and
mechanisms cause different
types of MECs, with
distinct physiological and
neural signatures.

Similarly, using the approach detailed above, compare
physiological and neural correlates for MECs elicited via each
mechanism. Alternatively, collect these measures along with
qualitative descriptions of MECs to identify differences between
different categories of MECs.

Note. * Predictions derived from preliminary model of MECs.

interpret. In terms of biological basis, MECs are associated with physiological

changes and increased arousal, and recruit brain structures and systems relevant

to emotion, reward, and motivation. We reviewed many possible causes of MECs

in this chapter. In light of the quality and quantity of the evidence, we believe

certain factors to be of particular importance. Notably, MECs can be elicited

by acoustic, musical, and emotional stimulus-driven properties which, taken

together, suggest a prominent role of sudden changes in acoustic properties, of

high-level structural prediction, and of emotionality. They are influenced by

personality differences, and especially openness to experience, which is a strong
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predictor of the ability to experience MECs. Finally, the more convincing theo-

retical accounts of the function of MECs suggest an involvement of mechanisms

based on expectation, peak emotion, and being moved.

We concluded this chapter by establishing a preliminary framework for future

research on MECs, providing a set of minimum criteria for a response to music

to be considered as an instance of MECs, a model of MECs that explicitly allows

for different psychological pathways for the experience of MECs and different

types of MECs, a dataset of pieces of music known to cause MECs, and a list of

open issues, hypotheses, and potential experiment approaches.
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Chapter 3

Preference and familiarity

In Chapter 2, we went over methodological limitations in previous research on

MECs, and outlined a set open issues based on the reviewed literature. The

present chapter introduces a study following some of the recommendations laid

out in Chapter 2, in which the relationships between MECs, piloerection, pleasure,

musical content, stylistic preference, familiarity, and liking are examined in a

controlled, longitudinal experiment.

3.1 Introduction

Broadly speaking, the present study aimed to investigate the effects of three

independent variables (musical content, stylistic preference, and familiarity) on

three dependent variables (MECs, piloerection, and pleasure), as well as the

extent to which static ratings of liking for pieces of music could be predicted by

all of these factors combined.

Musical content here refers to the collection of stimulus-driven characteristics

that might influence the propensity of a specific piece of music to induce MECs.

As discussed in Chapter 2, MECs have previously been considered to be highly

idiosyncratic. There is merit to this claim, given that in many studies, one

participant’s MECs-inducing stimulus is successfully used as another participant’s

control stimulus. However, this view is incompatible with the fact that there

is evidence (though mostly correlational in nature) for an association between

MECs and a range of clearly defined acoustic and musical elicitors, which should

logically lead to some pieces of music being more likely to induce MECs than

others. It is unlikely that a specific combination of elicitors always induces MECs

for everyone, or conversely, that MECs can be experienced when listening to

any piece of music. Instead, we would expect that, in aggregate, pieces of music

which induce MECs for some people are more likely to induce MECs in others
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than randomly selected pieces of music.

A possible way to establish causation for this claim is to assess the occurrence

of MECs when listening to tracks that have previously been reported to elicit

MECs compared to tracks that have not. The possibility of confounding factors

can be limited by matching this second set of tracks with the first as closely

as possible on every parameter (including, in this case, artist, duration, and

popularity) except musical content, resulting in two comparable pools of tracks

(hereafter referred to as sources). While it is likely that some tracks from the

matched source also have the ability to cause MECs, we would expect tracks

from the chills source (i.e., tracks previously reported to elicit MECs) to cause

more MECs (see Chapter 4 for a more thorough discussion of the assumptions

behind this study design). When it comes to musical content, the hypothesis was

therefore that tracks which cause MECs for some people are more likely to cause

MECs for other people. Causal evidence from this study should help clarify if

this is the case, which would suggest that there is a clear effect of acoustic and

musical elicitors on the occurrence of MECs, or if MECs can be experienced

when listening to any music, which would suggest that they are an indicator of

individualised responses to music, or at least that other factors are involved.

Stylistic preference and familiarity are two of these factors (included in the

listening context section of the model of MECs introduced in Chapter 2), and

are likely to be involved either way, considering that the occurrence of MECs is

not determined by stimulus-driven properties alone. Previous research identified

conflicting effects of stylistic preference (Bannister & Eerola, 2018; Nusbaum &

Silvia, 2011), but these findings were limited in two ways. First, the hypothesis

was that the occurrence of MECs might be driven by preference for a specific

subset of musical genres, resulting in findings that individuals who experience

MECs tend to prefer reflective and complex genres in one study (Bannister &

Eerola, 2018), or upbeat and conventional genres in the other (Nusbaum &

Silvia, 2011) as measured by STOMP, the Short Test Of Music Preferences

(Rentfrow & Gosling, 2003). However, if MECs involve an interaction between

listener, context, and music (see Chapter 2), we would expect an individual’s

stylistic preference for any genre to have an effect on the occurrence of MECs.

In other words, rather than the characteristics of specific genres leading to more

MECs, stylistic preference should drive the occurrence of MECs by making them

more likely to occur in an individual’s preferred genre, through a combination

of personal taste and stylistic enculturation, possibly linked with an effect of

expectation on MECs (see Beier et al., 2020).

Second, there are limitations to the methods that were used to assess stylistic

preference. STOMP was designed to investigate personality differences in the

preference for specific musical genres, and consists of asking participants to
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provide Likert scale preference ratings for 14 genres. More recent approaches

require participants to rate their preference for musical exemplars assigned to

each genre, instead of rating labelled genres directly (Bonneville-Roussy et al.,

2017; Rentfrow et al., 2011). Such approaches are limited because they all rely of

some degree of reductionism and subjective interpretation in genre labelling and

categorisation (by participants or researchers), which is therefore not consistent

across individuals, and because most adults have omnivorous stylistic preferences

(for a review, see Greasley & Lamont, 2016). For the purpose of the present

study, this issue was circumvented by directly asking participants whether a

given track was in a liked genre or not, without relying on labelling said genre,

allowing for an objective and causal investigation of the hypothesis that more

MECs are experienced when listening to tracks in preferred musical genres.

Familiarity, similarly to stylistic preference, could possibly affect the occur-

rence of MECs. There is a long history of research on the link between familiarity

and liking, including seminal work such as Zajonc’s (1968) mere exposure effect

and Berlyne’s (1971) inverted-U relationship. Overall, previous research identi-

fied a strong relationship between familiarity and liking for music (for a review,

see Greasley & Lamont, 2016). Of relevance to research on MECs, familiarity

was even identified as more important than liking for emotional engagement

with music (Pereira et al., 2011). When it comes to direct empirical evidence of

an association between familiarity and MECs, however, results are mixed and

were affected by methodological limitations, as discussed in Chapter 2. Notably,

repeated exposure was only assessed in the context of a single experimental

session (Baltes, et al., 2011; Bannister, 2020c; Blood & Zatorre, 2001) or over a

longer period, but for a single participant (Grewe et al., 2007), or the effect of

familiarity was only assessed statically, by comparing ratings of familiarity across

stimuli (see Chapter 2). Longitudinal methods have been underused in research

on familiarity and liking (Greasley & Lamont, 2016), but they remain the best

way to systematically manipulate familiarity in order to show causal effects on

MECs. The present study used such an approach, with the hypothesis that

increased exposure, and therefore familiarity, results in increased occurrences of

MECs.

In terms of dependent variables, the present study examined all of MECs,

piloerection, and pleasure. The reasons for considering different dependent

variables instead of MECs only were threefold, and are all discussed in Chapter

2. First, not all MECs are accompanied by piloerection, so there is a need to

investigate whether MECs and piloerection are similarly affected by changes

in track source, stylistic preference, and familiarity. Second, while there is

a documented association between MECs and pleasure, there have been few

attempts, if any, to disambiguate the two responses in previous research. Finally,
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while the use of objective measures would have been preferred, such as the

automatic detection of piloerection, we have argued that a combination of self-

reports and objective measures is currently best suited for the study of MECs.

Collecting data on these three variables therefore allowed us to explore the

hypotheses that piloerection overlaps with self-reported MECs, and that MECs

are more likely to occur in musical passages perceived as pleasurable.

The research design for this study aimed to provide ways to systematically

manipulate all three independent variables, while also following the method-

ological recommendations laid out in Chapter 2, which argue for the use of

naturalistic listening experiences using existing pieces of music in order to in-

crease ecological validity, which are both considered crucial when investigating

aesthetic and emotional responses to music (Eerola, 2018; Hargreaves & North,

2010; Hodges, 2016). In summary, the main hypotheses underlying this study

were that the occurrence of MECs increases for tracks previously identified to

cause MECs (as discussed above), with stylistic preference, and with familiarity

(both included as hypotheses of interest in Chapter 2), that there is an overlap

between piloerection, MECs, and pleasure in music (as discussed in the previous

paragraph), and that the combination of all of these factors has an effect on

overall liking for pieces of music (a key motivation for the present thesis).

3.2 Methods

3.2.1 Stimulus selection

Online survey

We conducted a survey study hosted on Qualtrics (Qualtrics, Provo, UT) with

several distinct objectives: 1) build a set of ecologically valid stimuli from

a single, controlled, and contemporary source for the purpose of the present

study, 2) build a large dataset of onset of MECs for the computational analysis

detailed in Chapter 5, 3) collect some basic demographic information for further

investigation into the effects of individual differences on the occurrence of MECs,

and 4) contribute to building a pool of potential participants for the present

study. This survey was conducted online in order to access a wider and more

representative sample of the population.

Survey responders were asked to report basic demographic information such

as age, gender, and country of residence. They were then asked to provide up to

ten pieces of music that include instants at which they often experience chills

(defined here as shivers, goosebumps, or a tingling sensation experienced in

response to music listening). For each piece of music, participants were asked

to provide the name of the artist or composer, the title of the piece of music,
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a link where the piece of music can be streamed online (on Youtube, Spotify,

SoundCloud, or a similar platform), and at least one and up to five precise

timestamps for instants at which they often experience the onset of chills (i.e.,

the exact moment at which chills tend to begin). Participants were advised not to

include music which can be strongly associated with specific personal memories,

such as life events (e.g., a wedding, a memorable concert, etc.) or periods of time

(e.g., summer of 2013, secondary school, etc.), or music that was taken from

a film soundtrack if they had watched the film in question. These restrictions,

taken from a previous study by Salimpoor et al. (2009), were meant to maximise

the possibilities that the MECs in question were induced by widespread and

detectable acoustic and musical elicitors, as opposed to autobiographical elicitors

driven by episodic memory, which would not generalise across participants.

Survey responses for the present study were collected between February

2018 and May 2018, although the survey was left running for longer to collect

more onsets of MECs for the computational study presented in Chapter 5. The

questionnaire was disseminated on a wide range of online platforms, including

international academic mailing lists, staff and student mailing lists within Queen

Mary University of London, as well as Twitter1 and Reddit.2 Complete responses

were collected from 221 participants, ranging in age from 18 to 77 years (M =

25.3 years, SD = 9.4 years). Of the participants who reported their gender, 72

identified as female and 144 as male. Responses originated from a wide range of

geographical areas (50 % North America, 37% Europe, 5% Asia, 5% Oceania, 2%

South America, 1% Africa). The resulting data required some manual cleaning,

consisting of removing entries which were not changed from the default answers

provided in the survey, as well as discarding non-valid URLs. This process

resulted in retaining 214 complete responses, corresponding to 671 tracks.

From these 671 tracks, we needed to subset a pool of suitable stimuli according

to the requirements of the study. This process involved four steps. First, tracks

which were not available for streaming on Spotify were discarded. Second, tracks

which were longer than five minutes in duration were discarded (with a few

exceptions discussed later), in order to keep the duration of the experiment

manageable, considering that the participants would need to listen to several

tracks many times throughout the lab experiments and the longitudinal phase of

the study. This duration is consistent with similar studies requiring participants

to listen to several tracks in one sitting (Laeng et al., 2016; Mori & Iwanaga,

2014b), and was preferred to selecting excerpts from each track (Blood & Zatorre,

2001; Sachs et al., 2016; Salimpoor et al., 2009), so as to ensure ecological validity

by allowing participants to listen to tracks in full. Third, tracks for which MECs

1https://www.twitter.com
2https://www.reddit.com
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were reported within ten seconds of the beginning or the end of the track were

discarded. This threshold was set arbitrarily, with the objective to maximise the

chances of new listeners experiencing MECs. Finally, tracks for which MECs

were reported within ten seconds of any passage including sung lyrics were

discarded. It was decided to implement this restriction because sung lyrics have

the potential to introduce additional confounding factors. This is often accounted

for in previous research by asking participants to provide instrumental music

only, but we felt this was overly restrictive for the purpose of the present study.

These thresholds (five minutes for track duration and ten seconds for buffers

between reported MECs and track beginning, end, and sung lyrics) were chosen

by comparing different threshold values in order to retain an adequate number

of tracks while minimising track duration and maximising buffers.

This process results in a pool of 93 tracks, which we subsequently refer to as

tracks from the chills source.

Matching procedure

As discussed above, a part of the experimental design for this study relied on

comparing tracks previously reported to cause MECs to tracks that were not,

matched as closely as possible on every parameter except musical content, result-

ing in two comparable pools of tracks. The rationale behind this manipulation

was that, considering that acoustic and musical elicitors of MECs have been

identified in previous research, it logically follows that some pieces of music

should include more of these elicitors than others. If the hypothesis that, as

a consequence, music which induces MECs for some people is more likely to

induce MECs in others, tracks from the chills source should then be more likely

to induce MECs than tracks from the matched source. This reasoning is central

to several experiments in the present thesis, and the assumptions and limitations

behind it are covered in more detail in Chapter 4.

The matching procedure used in this study was inspired by the one used

by Jakubowski et al. (2017). In their study, the authors aimed to obtain close

matches for a set of 100 tracks that were named as causing involuntary musical

imagery (otherwise known as earworms) in order to run statistical comparisons

between both sets of tracks. Matching was performed by identifying a pool of

candidate tracks with similar artists, time periods, chart positions, and genres as

the target set of tracks. Matching was then conducted algorithmically, allowing

precise matching on several variables at once: artist, genre, and chart information

(highest entry, longevity, and days since exit).

While the procedure for the present study was conducted manually, a similar

algorithmic procedure is detailed in Chapter 4. In the present study, each track
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from the chills source received five candidates for matches, which were manually

shortlisted in the following way. First, a match should not have been mentioned

in any of the survey responses as a track which can elicit MECs. Second, a match

should be from the same artist as the target track. Third, its duration should

be between 2.5 and 5 minutes. Fourth, its popularity, as assessed by the number

of plays on Spotify, should be between half and double that of the target track.

Finally, when possible, it should be sourced from the same album as the target

track. If not, search should be expanded to tracks produced as close as possible

in time to the target track. This process allowed to select candidate tracks while

controlling as much as possible for stylistic preference (following the assumption

that artists tend to produce tracks in relatively closely related genres), duration

(in order to allow for similar opportunities to experience MECs), and quality

(using popularity as a proxy for this more abstract measure). Each candidate

track was ranked manually, resulting in subjective rankings of how closely related

they were to their target track.

The top three matches for each track were retained, resulting in a pool of

279 tracks, which we subsequently refer to as tracks from the matched source.

3.2.2 Software and device

Stimulus allocation

The objective of the stimulus allocation online session was to select an individual

stimulus set of 20 unfamiliar tracks for each participant, consisting of five tracks

for each combination of source (chills or matched) and stylistic preference (liked

or disliked). This set of tracks would then be used by this participant for the

rest of the study.

Unfamiliarity was key to the present study, so there was a need to limit

exposure to each track as much as possible before the first lab session. In order

to do so, short excerpts were extracted for each track. The duration of said

excerpts was decided based on previous research. While the valence of a piece

of music can generally be recognised in excerpts lasting as little as one-eighth

of a second (for a review, see Mace et al., 2012), it generally takes up to a

second to identify the genre of a piece of music (Gjerdingen & Perrott, 2008;

Mace et al., 2012). When it comes to familiarity or song recognition, however,

estimates vary between less than a second and up to ten seconds (Jensenius,

2002; Krumhansl, 2010; Pereira et al., 2011; Schellenberg et al., 1999), with

the added caveat that salient features are required (Jensenius, 2002), such as

dynamic, high-frequency spectral information (Schellenberg et al., 1999). To

minimise the likelihood of familiar tracks being selected for the first lab session,

we opted for an excerpt duration of 15 seconds, which we deemed short enough
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to not affect the outcomes of the present study while safely allowing participants

to recognise both familiarity and stylistic preference for a given track.

There is much less information available about which excerpt should be

sampled from all possible excerpts present within a track, with Mace et al. (2012)

reporting random samples taken between 00:30 and 04:00 for each track, and

other authors simply not reporting that information (e.g., Bonneville-Roussy

et al., 2017; Krumhansl, 2010; Pereira et al., 2011). Randomly selecting excerpts

felt inadequate, so we opted for the heuristic of choosing the loudest moment for

each track as long as it didn’t correspond to a previously reported onset of MECs,

following previous recommendation about salience and dynamics (Jensenius,

2002; Schellenberg et al., 1999), and assuming that this would often correspond

to the most recognisable moment of a track. More precisely, each track was

trimmed by 10% in duration on each side, and a moving average of absolute

amplitude was computed using a 15-second sliding window. A 15-second excerpt

centred around the peak of the moving average was selected for each track,

as long as no onsets of MECs were reported during or within five seconds of

the excerpt. If MECs were previously reported near the excerpt, the process

was repeated using each following peak in average amplitude until a suitable

excerpt was identified for each track. A one-second fade in and fade out was

applied to each excerpt, before applying Root Mean Square (RMS) normalisation

to harmonise loudness between excerpts, and exporting the excerpts to MP3

format at 170–210 kbps to reduce loading times during the online session. Audio

computations and manipulations were conducted using the tuneR (Ligges et al.,

2018) and seewave (Sueur et al., 2008) R packages, and RMS normalisation and

MP3 exports were executed with Audacity.3

Each excerpt from the chills source was also tagged with a genre, with its

associated excerpts from the matched source inheriting that tag. Note that this

procedure still circumvented issues of genre labelling when determining stylistic

preference, since these genre tags were only used to group excerpts into broadly

similar categories in order to more quickly hone in on an ideal set of stimuli for

each participant, as described in the next paragraph. Excerpts from the chills

source were tagged with genre labels taken from MG-CT, the Music Genre-Clips

Test (Bonneville-Roussy et al., 2017), by manually comparing the excerpts from

the present study to the excerpts provided by the MG-CT and selecting the most

closely related genre, resulting in excerpts being categorised into 11 different

genres, ranging from two excerpts for punk music to 28 excerpts for classical

music.

The online questionnaire for the stimulus allocation session was developed

using psychTestR (P. M. C. Harrison, 2020), an R package allowing for the design

3https://www.audacityteam.org
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of online experiments recruiting a more complex internal logic, using R code

snippets, than that provided by most online survey platforms. The questionnaire

was hosted on shinyapps.io,4 and participant data was automatically uploaded

to Dropbox5 upon completion. Using psychTestR was necessary to dynamically

adapt the order of the presented excerpts in order to select a set of 20 appropriate

stimuli as fast as possible, since it was not reasonable to expect participants

to listen to and provide ratings for all 372 available excerpts before making a

selection. When taking the questionnaire, participants were first asked for their

age and gender, before taking the Musical Training sub-scale of the Gold-MSI

(Müllensiefen et al., 2014). They were then presented with the stimulus allocation

task. For this task, participants were presented with a series of excerpts and

posed two questions for each excerpt, asking them to report whether or not they

knew the piece of music the excerpt was taken from (with a possibility to answer

that they were unsure), and to rate how much they tended to like music which

sounded like the excerpt on a five-point Likert scale ranging from “Dislike very

much” to “Like very much”. In the instructions before the test, participants were

explicitly instructed that the second question referred to the genre or style of

the excerpt, and that they were not asked whether or not they liked the excerpt

itself.

The goal of the task was to select five unfamiliar excerpts for each combination

of source (chills or matched) and stylistic preference (liked or disliked), while

maximising the number of extreme values for stylistic preference (i.e., “Dislike

very much” or “Like very much”). In order to do so, the order of presentation

of the excerpts was determined using the following logic. First, two excerpts

were sampled from the chills source for each tagged genre, and presented in a

random order. If excerpts were familiar or familiarity was unsure, they were

discarded. If excerpts were unfamiliar and rated with extreme values of stylistic

preference, they were retained. Stylistic preference of the presented excerpts was

averaged by genre and updated with each answer, allowing the questionnaire to

identify the most liked and disliked genres for a given participant at any time.

Then, more excerpts from the chills source were played, focusing on the most

liked or disliked genres depending on which category had the fewest retained

excerpts, in order to maintain the balance between the number of excerpts in

very liked and disliked genres. Once 40 excerpts were played, ten excerpts were

retained for both liked and disliked genres, and were locked in for the chills set,

even if they gathered less extreme ratings, e.g., “Dislike somewhat” instead of

“Dislike very much”. Then, the task randomly iterated through the excerpts

from the matched source that were paired with each retained excerpt, to try to

4https://www.shinyapps.io
5https://www.dropbox.com
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identify similarly liked or disliked matches, starting with the most highly ranked

match before trying the other two matches. Similarly, excerpts from the matched

source were discarded if familiar or if familiarity was unsure, and were retained

if they were unfamiliar and had extreme ratings of stylistic preference in the

same direction as their associated excerpt from the chills source. If enough liked

or disliked excerpts were retained, the task stopped trying to fill that category

of stylistic preference. The task ended successfully if each combination of source

and stylistic preference received five excerpts with extreme ratings of stylistic

preference, or if 80 excerpts were played and excerpts with non-neutral ratings

of stylistic preference could be allocated to each condition. Participants failed

the task if it ran out of excerpts from the matched source, or if 80 excerpts were

played and five excerpts could not be allocated to each condition.

Goosecam

Before describing the software used for the lab sessions, it is useful at this point

to discuss the device that was used to record piloerection during these sessions.

The device consisted of a slightly more compact Goosecam (see Chapter 2 for

a brief description), intended to minimise the discomfort of wearing the rather

bulky original version of the Goosecam, made of a 160 × 40 × 40 mm aluminium

bar with a cutout to accommodate a webcam (Benedek et al., 2010). The

thorough specifications detailed by Benedek et al. (2010) allowed for the design

of a smaller device which complied with the original requirements of filming the

skin through a 40 × 40 mm cutout, illuminated from an angle of approximately

15º, from a distance of 46 mm. The body of the device was made of a laser-cut

box using a 3 mm acrylic sheet, the inside of which was lined with matte black

self-adhesive vinyl to minimise reflections. The pattern for that box was adapted

from an open-source Raspberry Pi case pattern,6 and is shown in Figure 3.1.

Inside the Goosecam, various components were powered and controlled by an

Arduino Nano board: a white LED panel affixed to one of the sides of the body

to provide directional light at an angle from the skin, a small OLED display

to facilitate stimulus identification when processing the videos for the analysis,

and a piezo buzzer and a green LED light to enable precise synchronisation

between the video and audio signals. All of these components were kept in place

with a healthy amount of hot glue to ensure they would not get in between the

camera and the skin cutout. The camera for this version of the Goosecam was a

GoPro Hero5 Session—a compact camera which allows native linear correction

for the fisheye distortion that is common in many GoPro cameras. Finally, the

edges of the bottom side of the box were padded with foam sheet to minimise

6https://github.com/diy-electronics/raspberrypi-b-plus-case
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Figure 3.1: Laser-cut vector design for the compact Goosecam. The top panel
shows the bottom side of the device, with a cutout for the skin to show through.
The two panels below that show the long sides of the device, with pressure-
activated locking mechanisms, cutouts for the top and bottom panels, and a
cutout for the cable connecting to the Arduino board. The two bottom panels
show the short sides of the device, with cutouts for the locking mechanisms.
Finally, the panel on the right shows the top side of the device, with a cutout
for the GoPro camera, and a groove in black for the camera mount.

participant discomfort, and the device was held in place by elastic velcro straps

looped through the bottom cutouts of the side panels (see Figure 3.2).

An Arduino script controlled the board. It read data sent from the computer

it was connected to via the board’s serial port, and extracted from this data

information about whether a track was about to start playing or had just stopped

playing, as well as unique identifiers for participants, lab sessions, and tracks.
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Figure 3.2: Pictures of the compact Goosecam. The picture on the left shows
the internal components with, going top-down, the white LED panel, the green
LED, the OLED display, the piezo buzzer hidden in the bottom-left corner, and
the Arduino board. The other two pictures show the Goosecam with the GoPro
mounted on top.

When a track started, the board instructed all indicators to switch on (white

LED panel, LCD screen displaying all identifiers, green LED, and piezo buzzer).

After one second, the components switched off except for the white LED panel

which provided illumination for the skin. The panel switched off when a new

serial message was received to indicate that a track had just ended.

Lab session platform

The objective of the first and last lab sessions was to collect continuous data as

participants listened to full tracks. We were interested in gathering piloerection

data, acquired via the Goosecam, as well as continuous self-reports for the

occurrence of MECs and pleasure. While it would have been interesting to

record self-reports of MECs intensity (using a slider, for instance) in conjunction

with piloerection data, in order to evaluate whether or not piloerection occurs

beyond a specific threshold of MEC intensity (see Chapter 2), it was decided

to use button presses to record binary responses instead, for the purpose of the

planned analyses and to minimise participant distraction given the complexity

of the task.

84



The full tracks were converted to Ogg format with a 44.1 kHz sample rate

and 16-bit bit depth, before RMS normalisation was applied using Audacity,

with a target RMS level of -18 dB and linked stereo processing, ensuring that

the original left/right stereo balance was maintained after normalisation. These

steps were necessary to ensure consistent sound quality and levels when music

was played at the same volume throughout the experiment (Mori & Iwanaga,

2014a).

The platform for the lab sessions was designed using OpenSesame (Mathôt et

al., 2012), an open-source graphical experiment builder enabling the sequencing

of graphical tasks based on code snippets written in Python. This platform was

selected for its ability to record the precise timing of key strokes, and for the

flexibility in its underlying logic and user interface design. The platform first

presented participants with instructions about how to operate it, followed by a

headphones volume calibration task, and a quick practice task (see Figure 3.3

for some of the instructions which were presented to the participants). The four

actions participants were asked to take when listening to each track were to

maintain the C key pressed down during experiences of MECs if any occurred,

to maintain the M key pressed down whenever they found a musical passage

pleasurable if at all, and after each track, to indicate whether or not they already

knew the track they just listened to, and to rate how much they liked said track.

The question about track familiarity was only presented in the first lab session,

to confirm that the tracks were indeed unfamiliar following the online stimulus

allocation task, and to present alternative tracks if not.

For each track, the following series of actions and logging events were taken by

the platform. First, a serial message was sent to the Goosecam one second before

recording a 30-second baseline measurement (required for processing Goosecam

data), concluded with another serial message to signify that the baseline recording

was over. The platform then slept for three seconds, before reiterating the

procedure and playing the track instead of performing a baseline recording (see

Figure 3.4 to see the platform during baseline recordings and when playing a

track). While the track was playing, the onset and offset of key strokes were

precisely recorded, in order to log when and for how long participants reported

occurrences of MECs or pleasure in music. The accuracy and synchronisation

of serial messages, track-playing triggers, and key stroke logging actions were

extensively tested and validated prior to running the experiment. Note that the

potential effect of key presses on the occurrence of piloerection was not tested,

due to extensive previous evidence that such an effect is most likely not present

(see Chapter 2).

Similarly to the stimulus allocation task, the order of presentation of the

tracks followed some underlying logic, aimed at ensuring that three unfamiliar
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Figure 3.3: Graphical user interface for the lab session platform. This step of the
participant instructions describes how to use key presses to report occurrences
of MECs and pleasure in music throughout the experiment. In this case, the C
key is pressed down, and is therefore highlighted in blue in the user interface.

Figure 3.4: Graphical user interface for the lab session platform during the track
listening task. Before each track, a baseline recording is performed. During
each track, participants can use key presses to report occurrences of MECs and
pleasurable moments in music. During both phases, participants are instructed
to avoid unnecessary moments.

tracks would be presented for each combination of source and stylistic preference,

which is why five tracks per condition were retained in the stimulus allocation

task to allow room for some of the retained track actually being familiar to the

participants. In practice, for both high and low stylistic preference, the platform

randomly selected three tracks from the chills source and their associated tracks

from the matched source, and played them in random order. If a track was

identified as familiar, it was discarded along with its paired track, and that pair

was replaced by one of the two back-up options from the stimulus allocation
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task. The task ended successfully when the participant had listened to three

unfamiliar tracks in each condition, or failed when no more tracks were available.

3.2.3 Procedure

Participants were recruited through internal mailing lists of undergraduate and

postgraduate students at Queen Mary University of London, and by emailing

the participants from the survey study who accepted to be contacted for future

research. In order to be eligible for taking part in the study, participants needed

to often experience MECs (defined here as shivers, goosebumps, or a tingling

sensation) when listening to music, to listen to at least an hour of music per

day, and to have the ability to access Spotify on a computer or smartphone. 33

participants (18 female, 15 male), ranging in age from 19 to 38 years (M = 25.5

years, SD = 5.5 years), took the stimulus selection online task, during which

they completed the Musical Training sub-scale of the Gold-MSI, and underwent

the stimulus selection process, by rating up to 80 randomly selected, 15-second

excerpts for familiarity and stylistic preference, resulting in an individualised

set of 20 candidate tracks for each participant, comprising of five tracks for

each combination of source (chills or matched) and stylistic preference (liked or

disliked). The researchers were automatically notified of test completion, and

followed up with the participants to schedule a time for the first lab session.

Of those 33 participants, 3 were discarded because a set of stimuli could not

be finalised for them, either because too many excerpts were rated as familiar, or

too few excerpts were rated with non-neutral values for stylistic preference. As

a result, 30 participants (16 female, 14 male), ranging in age from 19 to 36 years

(M = 24.9 years, SD = 4.8 years), took part in the first lab session, conducted

in a soundproofed listening room a few days after the online task. They were

asked to adjust headphones volume to a comfortable level, before being allowed

to experiment how to interact with the platform. They were then presented with

12 to 20 retained tracks from the online task, while using keyboard presses to

continuously report MECs and pleasure in music, if any occurred. Piloerection

was recorded using the Goosecam, worn on each participant’s non-dominant

arm, and participants were therefore asked to avoid unnecessary arm movements

when listening to the tracks. They were given opportunities to take a break

between each track. At the end of the lab session, participants were offered the

option to take part in the longitudinal phase of the study.

Of those 30 participants, 13 (7 female, 6 male), ranging in age from 19 to

36 years (M = 25.6 years, SD = 5.1 years), agreed to take part. They were

emailed a link to a Spotify playlist containing the 12 unfamiliar tracks they

listened to during the lab session, as well as a link to a short, password-protected,
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Qualtrics survey. They were asked to listen to the playlist eight times (but

not more than once a day), away from the lab, before the final lab session,

which was scheduled two weeks after the first lab session. They were instructed

to avoid distracting social contexts when listening to the playlist, whenever

possible, but were also told that intense, focused listening was not necessary

(e.g., listening when commuting, exercising, etc. was accepted), and that it was

fine to not listen to the entire playlist at once, as long as it was listened to

in full before completing a survey. Participants completed a survey after each

time they finished the playlist, in order to report the tracks during which they

experienced MECs, if any. The tracklist order was manually randomised by

the researcher every five days, and participants were also given the option to

receive email reminders to complete the tasks at regular intervals. The duration

of the longitudinal phase and number of repetitions were chosen to be broadly

consistent with other longitudinal studies investigating psychological responses

to music (Chmiel & Schubert, 2019; Grewe et al., 2007; Madison & Schiölde,

2017), while trying to minimise attrition and fatigue.

The final lab session was essentially similar to the first session, with the

exception that participants were not asked to rate familiarity for each track after

listening to them.

Participants who completed both the stimulus selection task and the first

lab session were entered into a draw for a £150 Amazon voucher. In addition,

participants who completed the full study were offered £20 for their time. It is

worth noting that the sample sizes for the different parts of the present study

were fairly small, which is due to the time-consuming nature of the experiment

and the monetary constraints for participant compensation. We would note,

however, that these sample sizes are consistent with similar previous research on

piloerection or longitudinal effects (e.g., Bannister & Eerola, 2018; Madison &

Schiölde, 2017; Wassiliwizky, Jacobsen, et al., 2017).

A summary of all the data collection steps is shown in Table 3.1 and a

graphical representation of the experimental design is shown in Figure 3.5. The

full experiment was tested on three volunteers. This resulted in the identification

and correction of small software bugs for some edge cases, in validating the

Goosecam by manually confirming the consistency between video input and

device output, and more importantly, in switching from using a single Goosecam

baseline for the whole experiment to recording a baseline before each track. This

change resulted in more consistent measurements, and had the added advantage

of allowing participants to take a break during the experiment without disrupting

the calibration of the Goosecam.
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Table 3.1: Summary of data collection steps

Step Data collection Participants Objective

1. Online survey* Feb 2018 –
May 2018

221 online
(Qualtrics)

Compile a list of tracks which
elicit MECs

2. Stimulus allocation Nov 2018 –
Jun 2019

33 online
(psychTestR)

Select unfamiliar tracks from
Step 1 for each participant

3. First lab session A few days
after Step 2

30 in-person
from Step 2

Collect continuous data as par-
ticipants listened to full tracks

4. Longitudinal phase Immediately
after Step 3

13 from Step 3 Increase familiarity with
previously unfamiliar tracks

5. Final lab session Two weeks
after Step 3

Same as Step 4 Assess the effect of familiarity
on MECs

Note. * The online survey was left running after May 2018 to build a dataset for the
computational study detailed in Chapter 5.

3.3 Analysis

3.3.1 Piloerection data

Video file processing was automated using FFmpeg (Tomar, 2006), an open-

source command-line tool for handling multimedia files. Due to the long duration

of the lab session, the footage was split into multiple files when saved to the

GoPro’s SD card. Using FFmpeg, the files were concatenated into a single, large

video file per session. Synchronisation between the video and the experiment

logs was achieved by careful manual identification of the timestamp at which

the Goosecam’s green LED light and piezo buzzer first switched on, signifying

that the serial message for the first baseline recording had just been received,

and by trimming the video before that timestamp. The skin-side cutout was

Figure 3.5: Simplified summary of the experimental design. The main indepen-
dent variables are shown in red, and the main dependent variables are shown in
blue.
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centred and cropped down to 506 × 506 px to ensure only an illuminated portion

of the skin would be captured. The video was then rotated by 90º to reach

the expected orientation (due to the way the GoPro had to be mounted on the

Goosecam), audio signal was removed from the file, and the frame rate was

downsampled to 10 Hz. Finally, the video was automatically split into individual

files corresponding to each track, using the timestamps logged by the lab session

platform.

Individual video files were processed with Gooselab,7 a MATLAB toolbox

which performs the computations described in Benedek et al’s (2010) article.

Broadly speaking, for each frame, the toolbox extracted the largest possible

square image from the video file (an unnecessary step in this case, since the frames

had already been cropped), before converting it to grey scale, applying a high-

pass filter, running a two-dimensional discrete Fourier transform, performing

angular averaging, and computing piloerection as the maximum amplitude

within a specific frequency range. This process resulted in a time-series showing

piloerection values for each frame, with higher values corresponding to greater

observed piloerection.

Piloerection events then needed to be extracted from these continuous time-

series. To do so, for each combination of lab session, participant, and track, a

threshold was set at three standard deviations over the average baseline value.

Piloerection events for each track were then assigned to each period of at least

ten consecutive frames (i.e., one second) exceeding that threshold value, with

the onset and offset of piloerection occurring on the first and last frame the

threshold was exceeded for that event, following the updated recommendations

by Benedek and Kaernbach (2011). Figure 3.6 shows a particularly clear episode

of piloerection, overlapping with self-reported MECs and pleasure.

3.3.2 Statistical analyses

After data processing, the three dependent variables (MECs, piloerection, plea-

sure) consisted of time-series of binary events. There were several possibilities

with regard to quantifying their occurrence within each track. For the first set

of analyses, we opted to sum the duration of each event for each track, and to

scale that value according to track duration, so as to not penalise slightly shorter

tracks. The resulting value can be interpreted as the total duration (in seconds)

for which events (e.g., MECs) were experienced during a track, if that track were

five minutes long. This approach was chosen instead of simply counting tracks

during which events occurred or not, since most tracks featured reports of MECs

7The official link to the Gooselab toolbox is deprecated, and currently, there seems to
be no official repository for the toolbox but luckily, a working version was found on Github:
https://github.com/tstenner/gooselab
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Figure 3.6: Time-series of piloerection values. The threshold for a piloerection
event to occur is indicated by the green dashed line. Raw piloerection values are
shown faintly in grey, and smoothed values in green, for visualisation purposes
only. If piloerection values exceeded the threshold for ten consecutive frames,
a piloerection event was assigned to the track, as indicated by the green bar.
In this case, the piloerection events considerably overlapped with self-reported
MECs, in blue, and pleasure, in purple. Example video frames are shown at two
different time points, displaying piloerection in the top frame, and no piloerection
in the bottom frame.

and pleasure, as later explained in the results, which would have resulted in a

loss of much of the signal in the data. Another option would have been to simply

count the number of events per track, but this would have been biased by small

imprecisions in the measurements, such as long events being interrupted by the

self-report key not being pressed properly for a short moment, or by piloerection

values dipping below the threshold for just a few frames, for instance. Summing

up the duration of events seemed like a reasonable compromise to keep as much

of the signal as possible while minimising the risk for bias. Note that for these

analyses, the resulting variable for piloerection was log-transformed in order to

adhere to the assumptions of the statistical tests that were used.

For this first set of analysis, we fit a linear mixed-effects model for each of the

dependent variables, using familiarity, stylistic preference, and source as fixed

effects, and participant and track as random effects. We opted not to test for

interaction effects due to the relatively large number of variables considering

the small sample size, which would have increased the risk of overfitting the

models. Since these models included all participants, regardless of whether

or not they completed the longitudinal phase of the study, we also conducted

paired t-test to test the effect of familiarity on each dependent variable for the

subset of participants who attended both lab sessions. Finally, we fit another

linear mixed-effect model to assess the extent to which the combination of all
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variables predicted the variance in the ratings of liking collected after listening

to each track, therefore using MECs, piloerection, pleasure (all preprocessed by

scaling the features, since they were continuous), familiarity, stylistic preference,

and source as fixed effects, and participant and track as random effects. Note

that for this analysis, the emphasis was placed on predictive power rather than

interpretability, seeing as some of the variables were highly collinear.

All mixed-effects were fit using the lme4 R package (Bates et al., 2015).

Diagnostic tests revealed that there were no high-leverage outliers, and that

there was adequate homoscedasticity and normality of residuals (except for

piloerection, at first, which is why the variable was eventually log-transformed).

Model fits were evaluated by performing likelihood ratio tests, which were run

by conducting ANOVAs comparing the fitted models with null models including

random effects only. Marginal and conditional R2 values were obtained with the

MuMIn R package (Bartoń, 2020). Marginal R2 outlines the variance explained

by the fixed effects only, while conditional R2 outlines the variance explained by

the whole model (Nakagawa & Schielzeth, 2013). Finally, p-values for the fixed

effects were obtained using the lmerTest R package (Kuznetsova et al., 2017).

To conclude the first set of analyses, a range of tests were conducted as

sanity checks, as well as to explore some relationships in the data. First, we ran

correlation tests to verify whether or not room temperature had an effect of the

occurrence of piloerection and self-reports of MECs. Second, we ran a series of

correlation tests and t-tests to test the existence of relationships between age,

gender, and musical training and all of the dependent variables. Finally, we

tested the correlations between the dependent variables themselves.

The second set of analyses concerned the longitudinal phase of the study,

for which only occurrence of MECs at the track level was collected. Note that

this data was analysed separately due to the completely different ways in which

data was collected. While the longitudinal phase was mainly aimed at increasing

familiarity for the final lab session, it also had the potential to reveal how

repetition affected the occurrence of MECs. For this analysis, we fit a logistic

mixed-effect model with number of repetitions as a fixed effect and participant,

source, and stylistic preference as random effects. Apart from diagnostic tests

on residuals, which are much less interpretable for logistic regression, the same

procedures as detailed above were used to explain the model.

For the final set of analyses, the dependent variables were taken in their binary

time-series form. The purpose of these analyses was to assess the degree of overlap

between MECs, piloerection, and pleasure. For this purpose, permutation tests

were chosen, as they allow for the convenience of choosing the most appropriate

test statistic for the task at hand, and their nonparametric nature eliminates the

need to validate many assumptions inherent to time-series analysis. A one-sided
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permutation test was run for each pair of dependent variables, using Monte Carlo

estimation with 5000 replications. The test statistic was calculated by taking

the percentage of frames during which both events occurred simultaneously, for

each track, and then averaging the obtained values for each track over the whole

experiment, resulting in an average rate of overlap per track. Permutations

were conducted by randomly rearranging event onsets within each track, while

ensuring that events did not overlap within a single variable. For example, if

a given track was 20 seconds long, and contained two reports of MECs, from

0:05 to 0:07 and 0:11 to 0:16, a valid permutation for this variable would be

to rearrange MECs so that they occur from 0:01 to 0:06 and from 0:17 to 0:19.

However, rearranging MECs so that they occur from 0:01 to 0:06 and from 0:05

to 0:07 would not be valid, since these events overlap with each other.

3.4 Results

One participant displayed unusual patterns in their self-reported responses.

After close inspection of their data, it appeared that the participant did not

fully understand the task, and repeatedly pressed keys when MECs or pleasure

occurred instead of keeping the keys pressed down as instructed, resulting not

only in many more key strokes than any other participant, but also in small bugs

due to the speed at which data was being written by OpenSesame while running

the task. Instead of manually fixing the data, which would have required making

a lot of assumptions as to what was the intended behaviour, we deemed it more

appropriate to exclude this participant from the data analysis.

Of the remaining 29 participants, 27 reported MECs at least once, 11 ex-

perienced piloerection at least once, and all of them reported pleasure at least

once. When looking at data at the track level, out of the 152 tracks that were

listened to throughout the experiment, 116 caused MECs at least once, 32 for

piloerection, and 135 for pleasure. Overall, using the scaled measure for the

dependent variables (i.e., total duration per track if each track were five minutes

long), MECs were experienced 20.8 seconds per track on average, 3.10 seconds

for piloerection, and 46.0 seconds for pleasure.

Effects of source, stylistic preference, and familiarity

For MECs, the linear mixed-effects model yielded a significant fit (χ2(3) = 36.84,

p < .001, R2
m = .047, R2

c = .502), revealing significant effects on MECs for

familiarity (b = 8.23, p = .013), stylistic preference (b = 15.47, p < .001), but

not source (b = 4.80, p = .123), with average reports of MECs increasing by 9.6

seconds for familiar tracks, and by 15.4 seconds for tracks in a liked genre.
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For log-transformed piloerection, the linear mixed-effect model yielded a

significant fit (χ2(3) = 11.35, p = .010, R2
m = .017, R2

c = .436), revealing

significant effects on piloerection for familiarity (b = −0.19, p = .013), stylistic

preference (b = 0.14, p = .031), but not source (b = −0.06, p = .394), with

average detected piloerection decreasing by 4.0 seconds for familiar tracks, and

increasing by 2.75 seconds for tracks in a liked genre.

For pleasure, the linear mixed-effects model yielded a significant fit (χ2(3) =

65.43, p < .001, R2
m = .088, R2

c = .527), revealing a significant effects on pleasure

for stylistic preference (b = 37.42, p < .001), but not familiarity (b = −0.43,

p = .931) or source (b = 2.46, p = .599), with average reports of pleasure

increasing by 39.3 seconds for tracks in a liked genre.

Considering the large differences between marginal and conditional R2 in

each model, simple linear regression models were also run to assess the individual

contributions of participant ID and track ID to the variance in the dependent

variables, revealing that, on their own, participants explain 45% of the variance

in MECs, 30% in piloerection, and 38% in pleasure, and tracks explain 10%,

18%, and 21% respectively, as measured by the adjusted R2 of the fitted models.

Restricting the analysis only to the participants who completed both lab

sessions, paired t-tests revealed a significant effect of familiarity (U for unfamiliar,

F for familiar in the reported summary statistics) on MECs (t(148) = 2.14,

p = .034, MU = 20.31, SDU = 42.34, MF = 28.50, SDF = 52.46) and

piloerection (t(148) = −2.11, p = .037, MU = 4.38, SDU = 23.03, MF = 0.40,

SDF = 2.96), but not on pleasure (t(148) = −0.08, p = .937, MU = 44.63,

SDU = 62.15, MF = 44.29, SDF = 57.52), confirming the results from the

mixed-effects models. For those participants, familiarity increased average reports

of MECs by 8.2 seconds, and decreased detected piloerection by 4.0 seconds,

consistently with the previous analyses.

Combined effects on liking

For liking, the linear mixed-effects model yielded a significant fit (χ2(6) = 328.42,

p < .001, R2
m = .505, R2

c = .709), revealing significant effects on the ratings of

liking collected after listening to each track for continuously reported pleasure

(b = 0.91, p < .001) and stylistic preference (b = 1.90, p < .001), but not for

the other variables, although it is worth keeping in mind that these individual

effects are not interpretable, due to the high collinearity between some of the

predictors.
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Figure 3.7: Effect of repeated listening on the occurrence of self-reported MECs
during the longitudinal phase of the study, starting from the second to the ninth
repetition (the first and last repetitions occurring during the lab sessions, and
therefore not shown or analysed). The first plot shows what might look like
a slight overall increase over time, but with large day-to-day swings and high
variance, as shown by the error bars. The two smaller plots show the differences
in occurrence of MECs when tracks are split by source or stylistic preference,
demonstrating that no clear patterns emerged other than that of tracks in liked
genres causing more MECs than in disliked genres overall.

Sanity checks

Room temperature was 21.2ºC on average (SD = 1.9ºC), which is comparable to

other studies which reported temperature (Benedek & Kaernbach, 2011; Laeng

et al., 2016), and was not correlated with either MECs (r(35) = −0.06, p = .711)

or piloerection (r(35) = −0.09, p = .599).

Age, gender, and musical training had no effect on any of MECs, piloerection,

and pleasure (all p > .05), with gender (F for female, M for male in the reported

summary statistics) trending the closest to significance, as seen with t-tests

on MECs (t(18.16) = 1.87, p = .077, MF = 9.98, SDF = 18.15, MM = 29.65,

SDM = 33.59), piloerection (t(13.68) = −1.48, p = .163, MF = 6.23, SDF =

13.56, MM = 0.81, SDM = 2.12), and pleasure (t(20.03) = 1.88, p = .074,

MF = 34.06, SDF = 30.76, MM = 63.72, SDM = 48.61).

Effect of repeated listening

For the effect of repeated listening on MECs, the logistic mixed-effects model

did not reach a significant fit (χ2(1) = 1.92, p = .166, R2
m∆ = .001, R2

c∆ = .263),

and there was no significant effect (b = 0.06, p = .16), presumably due to high

variance resulting from low sample size, as seen in Figure 3.7.
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Relationships between dependent variables

Correlation tests showed that average event durations were not correlated between

piloerection and either of MECs (r(491) = −0.02, p = .658) or pleasure (r(491) =

0.01, p = .827), but that they were correlated between MECs and pleasure

(r(491) = 0.52, p < .001).

When taken as binary time-series, however, these three variables showed

highly significant overlaps, as shown by one-sided permutation tests using Monte

Carlo estimation with 5000 replications. On average, the number of frames

showing overlap between both responses represented 0.11% of the total frames in

the track for MECs and piloerection (p < .001), 3.26% for MECs and pleasure

(p < .001), and 0.16% for piloerection and pleasure (p < .001). It should be

noted that these effects seem small in magnitude because overlapping frames

were compared to the total number of frames in all tracks. The permutation

tests revealed that this degree of overlap was much greater than what would be

expected by chance.

3.5 Discussion

In this study, we investigated the effects of musical content, stylistic preference,

and familiarity on the occurrence of MECs, piloerection, and pleasure, by setting

up a controlled, longitudinal experiment, ensuring that adequate comparisons

could be drawn across all variables.

First, we observed that the majority of participants reported MECs and

pleasure throughout the experiment, but than less than half of them experienced

detectable piloerection. This represent an unusually high proportion of MECs

(see Chapter 2 for a discussion about prevalence in experimental contexts, e.g.,

Colver & El-Alayli, 2016; Grewe et al., 2009a; Konečni et al., 2007), which

could be explained by the fact that each phase of the study required a lot of

music listening, and that the study itself was particularly long. In addition,

participants were recruited based on their ability to often experience MECs,

and tracks were selected to maximise the occurrence of MECs, or closely match

tracks that do. Conversely, it could be argued that the duration and format of

the experiment encouraged participants to overly report MECs. For instance, a

participant could find it unusual to listen to twelve or more full tracks during

an experiment while sitting in front of a keyboard and doing nothing at all, if

they didn’t experience MECs. This concern is slightly alleviated by the fact

that, when they were reported, MECs did significantly overlap with piloerection,

which is not consciously controlled by the participants.

The fact that participants experienced much fewer episodes of piloerection
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suggests a disconnect between reported MECs and piloerection. While there are

arguments that piloerection might only occur beyond a specific MEC intensity

threshold (Sumpf et al., 2015), other explanations could be that current piloerec-

tion detection methods are not yet accurate enough, or that piloerection and

MECs are not mutually exclusive. It is difficult to determine from this study

alone which of the responses is a more reliable indicator of MECs in general.

More research is needed on the exact relationship between self-reported MECs

and piloerection, and the methods introduced in this chapter might help in con-

ducting such research. For the present study, however, this discrepancy between

MECs and piloerection needs to be taken into consideration when interpreting

the results discussed below.

Stylistic preference had a positive effect on all three of MECs, piloerection,

and pleasure, which is not particularly surprising when it comes to pleasure, since

we would expect more pleasure to be experienced when listening to music in liked

genres. However, the fact that stylistic preference also drove the occurrence of

MECs and piloerection suggests that the conflicting results in previous research

(Bannister & Eerola, 2018; Nusbaum & Silvia, 2011) might have been due to

inadequate research methods. In other words, rather than preference for specific

genres (as identified by STOMP, for instance) leading to more MECs being

experienced, it could be that it was the interaction between a listener’s stylistic

preferences and the music being listened to that had such an effect. This raises

questions for future research about the role of stylistic knowledge or exposure.

For instance, would MECs occur in liked but unfamiliar genres? The effects of

stylistic preference and stylistic knowledge might be independent, or one could be

mediated by the other, such as stylistic knowledge leading to stylistic preference,

and in turn, stylistic preference increasing the likelihood of MECs, for instance.

Further systematic study could help in this regard, and could potentially uncover

valuable information about the role of expectation in the experience of MECs.

More surprisingly, familiarity had opposite effects on MECs and piloerection,

and no effect on pleasure. These results were confirmed when only looking at

the cohort of users who completed the longitudinal phase of the study. Pleasure

remaining stable with repeated exposure goes against previous longitudinal

findings that familiarity increases liking and music preference (Chmiel & Schubert,

2019; Madison & Schiölde, 2017). However, in the context of this study, pleasure

was disproportionately higher for tracks in liked genres than for those in disliked

genres. Pleasure could therefore have reached extreme values at the beginning

of the study, and remained stable in time. We would also argue that pleasure is

a more intense subjective response than liking or preference, and as such, might

evolve more slowly over time. The opposite effects of familiarity on MECs and

piloerection is interesting, and suggests, once again, fundamental differences
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between the two responses. One possible interpretation is that piloerection is

more reliant on physiological processes and might be more subject to habituation

as a result. Or it could be that the quantity of MECs increases with repeated

exposure, but their intensity decreases, therefore not exceeding the threshold for

piloerection discussed earlier. Leveraging the framework identified in Chapter

2, these results could also suggest that MECs which involve piloerection rely

on different psychological and evolutionary mechanisms than those which don’t.

Some MECs based on personal meaning could therefore benefit from repeated

exposure, while others based on surprise could temporarily disappear due to

frequent listening.

Musical content, manipulated via stimulus source, had no effect whatsoever.

As will be discussed more extensively in Chapter 4, it could be the result of the

strict matching procedure, i.e., an effect might have been detected by randomly

sampling control tracks from any artist and level of popularity instead. Since it

is fundamentally impossible to know if tracks from the matched source can cause

MECs or not (in all likelihood, some of them can), it could be that, by applying

a strict matching procedure, the features which cause MECs were present to

the same extent in the chills and matched sources. The assumption behind the

manipulation of stimulus source was that, if an effect of musical content exists,

it should be detectable in aggregate because some stimulus-driven properties

would make tracks from the chills source slightly more likely to cause MECs for

several individuals.

Additional context comes from the fact that the models discussed so far all

featured high conditional R2 values, and low marginal R2 values. This suggests

that, while the results presented so far were indeed significant, they accounted

for a small proportion of the variance in the dependent variables. Conversely, on

their own, participants and tracks accounted for much variance in the outcomes,

which indicates that participants have predictable response patterns, and that

specific tracks tend to elicit similar responses. The former might be explained by

individual differences, or simply by differences in how participants understood

the task or decided what passes the threshold of reporting MECs or pleasure.

Alternatively, the large number of tracks with no recorded response at all might

on its own account for much of these conditional R2 values.

Regardless, in the context of this study, it appears that likelihood of detecting

an effect of musical content was overestimated, especially if MECs partly rely

on personal meaning and not on stimulus-based elicitors, which would lead to

ceiling effects. However, we do know through previous research (e.g., Sloboda,

1991) that there is an effect of acoustic and musical elicitors. Considering the

small effect sizes obtained in the present analyses, it becomes clear that this

effect is subtle, and that much larger amounts of data would be needed to detect
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it. This is a type of problem that is particularly well suited to computational

approaches, and that will be the main subject of the rest of this thesis.

As opposed to the models discussed so far for continuous self-reports of

MECs, piloerection, and pleasure, effect sizes for both the fixed effects and the

whole model itself were large with regard to static ratings of liking collected

after listening to each track, with source, stylistic preference, familiarity, MECs,

piloerection, and pleasure accounting for about 50% of the variance in self-

reported liking for tracks. While further analysis, and probably a different study

design, would be needed to fully disentangle the individual contributions of these

fixed effects, it is interesting that much of music preference can be predicted

from a relatively small number of factors, and certainly suggests that preference

could be even more accurately predicted in a study dedicated to this purpose.

As expected (see Chapter 2), there were no effects of age, gender, or musical

training on any of the dependent variables, but interestingly, there were some

subtle differences due to gender, with female participants experiencing more

piloerection but fewer MECs and less pleasure than male participants. Inter-

pretation is limited here by the fact that these differences were non-significant,

and that there is currently no convincing hypothesis as to why such differences

would exist.

For repeated exposure, while the primary objective of making participants

listen to the tracks between the two lab sessions was to increase familiarity, we did

collect some data about the occurrence of MECs. No effect of repeated listening

was detected, but a small upward trend was visible on the figure representing

the proportion of MECs experienced over time. It is worth noting that for this

phase of the study, sample size was relatively low, there was less control over

experimental conditions, and MECs were reported in a different way. Such an

investigation might reveal interesting insights if conducted as a larger study,

but for the present study, the manipulation achieved the intended objective of

increasing familiarity.

Finally, we observed correlations between MECs and pleasure, but neither

of them were correlated with piloerection. However, permutation tests revealed

significant overlaps for all three variables. In fact, the test statistics had the

most extreme values out of all 5000 Monte Carlo simulations for all three pairs

of variables, indicating that the degree of overlap between them was almost

impossible to achieve by chance. This suggests that while piloerection differs

from MECs and pleasure, it is still strongly related to both of these responses. In

other words, they overlap significantly, but this doesn’t mean that they overlap

exclusively, which provides further support for the hypotheses that piloerection

requires exceeding an activation threshold (Sumpf et al., 2015), or alternatively,

that they only represent a subset of MECs and pleasurable moments in music. A
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potential caveat is that the overlap between MECs and pleasure could be driven

by asking participants to self-report the two measures at the same time, using

similar modalities. The mutual overlap with piloerection alleviates that concern

to some extent (but not fully), since piloerection was recorded using a device the

participants had no control over, as discussed earlier. For the present study, it

was not deemed practical to collect self-reports of MECs and pleasure separately,

because repeated presentation of the stimuli could itself have affected MECs or

pleasure, and using separate participant groups was not realistic given the large

contribution of individual factors to the experience of MECs.

Overall, there remain some unexplainable differences between MECs and

piloerection, with many participants reporting MECs, but few experiencing

piloerection. It could be that the Goosecam is at fault, but visual inspection

of the video files did not result in the detection of any obvious sensor errors.

When debriefing after the end of the experiment, several participants mentioned

experiencing piloerection in the neck, as has already been identified in previous

research (e.g., Panksepp, 1995). While it is difficult to imagine asking participants

to wear the current iteration of the Goosecam around their neck, it would be

helpful to eventually have access to better, more compact sensors, which could

enable the simultaneous collection of piloerection data from different areas of

the body. This is related to the difficulty in gaining confidence in participants’

self-reports of MECs, given the large differences in reporting behaviours across

participants. Perhaps subjective experiences of MECs are very different across

individuals, but we suspect that instead, it is just particularly difficult to identify

a definition of MECs that is not liable to subjective interpretation. Further

efforts towards the development of accurate and objective detection methods for

the overall experience of MECs, as opposed to piloerection only, would go a long

way in furthering research on MECs.

This study achieved many of its stated objectives, identifying strong effects

of stylistic preference on MECs, piloerection, and pleasure, opposite effects of

familiarity on MECs and piloerection, high predictability of liking based on a

small set of variables, and significant overlap between MECs, piloerection, and

pleasure, highlighting the close links between MECs and emotional and aesthetic

responses.

The investigated phenomena are complex, and differ highly across individuals,

and yet, these effects were detected, despite understandably small effect sizes.

The only exception is for musical content, which most likely requires much

larger amounts of data. Approaches aiming to do so are detailed in the next

two chapters of this thesis, starting in Chapter 4 with a corpus analysis of

the relationship between valence and MECs. Additionally, the present chapter

focused on exploring open issues presented in Chapter 2 as opposed to explicitly
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investigating the possible pathways included in the preliminary model of MECs.

Chapters 4 and 5 more closely explore these pathways and their associated

elicitors and mechanisms.
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Chapter 4

Perceived valence

In the study presented in Chapter 3, we didn’t manage to identify behavioural

differences when comparing tracks which have been previously reported as being

able to cause MECs with tracks which were matched to those by artist, duration,

and popularity. We hypothesised that this might have been due to small effect

sizes, not detectable in behavioural experiments with relatively small sample

sizes, and that applying computational methods to larger amounts of data might

have the potential to identify differences between these two sets of tracks.

This chapter presents the application of such methods to the investigation

of the relationship between valence on MECs. More specifically, since valence

is a readily available feature for computational analysis, as explained below,

it was chosen as a proof of concept to justify further computational work, as

presented in Chapter 5. With this study, we aimed to disentangle findings that

MECs have been linked to both happiness and sadness expressed by music. We

conducted a computational analysis on a corpus of 988 tracks previously reported

to elicit MECs, by comparing them with a control set of tracks matched by artist,

duration, and popularity, hereafter referred to as tracks from the matched source.

We analysed track-level audio features obtained with the Spotify Web API1

across the two sets of tracks, resulting in confirmatory findings that tracks which

cause MECs were sadder than tracks from the matched source, and exploratory

findings that they were also slower, less intense, and more instrumental than

tracks from the matched source on average. We also found that the audio

characteristics of tracks from the chills source were related to the direction

and magnitude of the difference in valence between the two sets of tracks. We

discuss these results in light of the current literature on valence and MECs in

music, provide a new interpretation in terms of personality correlates of musical

preference, and review the advantages and limitations of our computational

1https://developer.spotify.com/documentation/web-api
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approach.

4.1 Introduction

As discussed in Chapter 2, particular attention has been given to elicitors of

MECs, resulting in the identification of a range of acoustic and musical features

usually associated with the experience of MECs, such as sudden dynamic changes,

increased roughness, crescendi, or the entrance of new instruments. These

features represent local musical and auditory events, and are therefore reflective

of the fleeting nature of MECs.

In contrast to continuous changes within musical stimuli, emotional charac-

teristics of entire musical pieces have also been investigated. As a result, MECs

have been associated with perceived valence. However, there is disagreement

about the direction of this relationship. While Grewe et al. (2011) reported an

increase in frequency of MECs for positively valenced music, Panksepp (1995)

found that MECs were more frequently associated with perceived sadness. In

the latter study, however, both happy and sad music were found to elicit MECs,

reflecting subsequent findings that MECs are associated with both emotions

when they are expressed by music (Bannister, 2020b; Mori & Iwanaga, 2017;

Panksepp, 1995).

Conflicting effects of valence on MECs have been discussed in the context of

being moved, a mixed emotional state involving sadness and joy (Menninghaus

et al., 2015). More specifically, being moved has been associated with MECs

when listening to music (Bannister, 2019, 2020b; Bannister & Eerola, 2018;

Benedek & Kaernbach, 2011), and has been found to mediate the relationship

between liking and sadness in response to music (Vuoskoski & Eerola, 2017).

Moving stimuli often feature narrative displays of social separation or reunion

(Wassiliwizky et al., 2015), prosocial behaviour (Wassiliwizky, Jacobsen, et al.,

2017), or self-sacrifice (Konečni et al., 2007), but it remains unclear how such

narrative features translate to music, and how stimulus valence relates to the

occurrence of MECs. It could be that sad music provides an emotional context

more conducive to the occurrence of MECs (Panksepp, 1995). Another plausible

explanation for the mixed effects of valence on MECs comes from the possibility

that MECs encompass several phenomenologically distinct experiences, partly

characterised by different degrees of felt emotions (Bannister, 2019; Maruskin

et al., 2012).

This perspective was further developed in Chapter 2, in which a preliminary

model suggests three different pathways for the experience of MECs, linking

different types of elicitors to the combination of psychological and evolutionary

mechanisms most likely to elicit MECs, if not different types of MECs. In one
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such pathway, individuals with high trait empathy are suggested to be more

receptive to emotional elicitors of MECs, such as perceived valence, leading them

to mimic the perceived emotion through a process called emotional contagion,

and then to experience MECs through the process of being moved. Other

pathways link acoustic and musical elicitors to processes involving arousal and

musical expectation, respectively. There is little research on the existence of

these pathways, and confirming or refuting an effect of perceived valence on

MECs would be a useful step in providing support for the existence of one of

them, leading to a better understanding of the causes of MECs, and in turn, of

music appreciation in general.

In light of the current evidence, it remains difficult to establish the role

of expressed stimulus valence on the incidence of MECs. While behavioural

approaches have contributed to identifying conflicting effects of happiness and

sadness, they remain limited due to the number of stimuli which can be reasonably

presented to participants, ranging here from 3 (Bannister & Eerola, 2018) to

23 (Grewe et al., 2011). Computational methods, however, can overcome such

restrictions, and are well suited to the study of a large collection of naturalistic

stimuli, at the cost of reduced control over experimental conditions. When we

ran this study, there had been, to our knowledge, no use of corpus-based analysis

in research on MECs, despite the success of similar approaches in research on

music and emotion (e.g., Eerola, 2011). The analysis presented in this chapter

was an attempt at addressing this gap in the literature, focusing on the effects of

valence and other track-level audio features (i.e., features computed over entire

musical pieces) on MECs.

Specifically, we compared features between tracks known to elicit MECs

and a control set of tracks matched by artist, duration, and popularity. This

experiment allowed us to collect large amounts of data. As a consequence, to

promote transparency, we decided to clearly distinguish between confirmatory

and exploratory analyses, as recommended by Dushoff et al. (2019). First, we

conducted confirmatory analyses regarding the effect of the valence feature on

MECs, hypothesising a difference in expressed valence between the two sets

of tracks. Then, we conducted two exploratory analyses, to investigate the

influence of other features on the occurrence of MECs, and to assess whether

these features influenced the direction and magnitude of the difference in valence

between both sets of tracks, with the aim to reveal whether or not differences

in musical characteristics (i.e., different types of music) could be the reason

behind conflicting effects of valence on MECs. We discuss these results and the

advantages and limitations of our approach, and provide a new interpretation

with reference to a theory of the personality correlates of musical preference

(Rentfrow et al., 2011) introduced in Chapter 3, identifying relationships between
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MECs and several dimensions capturing musical preference for sophisticated

music and intense music.

4.2 Methods

4.2.1 Stimuli and features

Dataset

For this study, we used ChiM,2 a dataset prepared by compiling every mention

of a piece of music reported to elicit MECs in the literature reviewed in Chapter

2, following the methods described below.

In ChiM, pieces of music were only included if they were confirmed to elicit

MECs in at least one listener. As a result, some pieces of music mentioned

in the literature were intentionally omitted, if occurrences of MECs were not

precisely assigned to individual pieces of music (e.g., Mas-Herrero et al., 2014),

if no occurrences of MECs were recorded for specific pieces of music (e.g., Grewe

et al., 2007), or if MECs occurred in response to stimuli combining music and

other modalities (e.g., Strick et al., 2015). In the literature reviewed in Chapter

2, most mentions of pieces of music were included directly in the text or in the

associated supplementary materials. For Bannister and Eerola (2018), data from

the associated dataset (Bannister & Eerola, 2017) was also included.

The pieces of music were categorised according to whether each specific

mention represented an anecdote by the authors, a participant report of MECs,

an empirical verification of MECs, or a discussion of prior results. Artist names

and song titles were harmonised across publications, most often following a basic

search on Google or Wikipedia. Each mention of a piece of music was assigned a

unique ID, and individual pieces of music were also assigned a unique ID in order

to easily identify the ones which were mentioned several times in the literature,

as indicated by an additional variable. Mentions of several movements from

the same piece of music and otherwise duplicated mentions of pieces of music

in the same publication were consolidated into a row with a single mention ID.

Different performances or covers of a piece of music were assigned to the original

composer, with a separate variable containing notes about further details on

the performance. These pieces of music were assigned the same song ID with a

distinct suffix. Finally, whenever a reasonable guess was possible, missing artist

information was added. In other cases, missing information was indicated as

such.

2ChiM version 1.0.0, available on Zenodo as a permanent archive, at https://doi.org/10.
5281/zenodo.3950516
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Figure 4.1: Count of pieces of music in version 1.0.0 of ChiM. The first plot shows
the source of most items in ChiM, with more than 500 pieces of music originating
from two articles only. The two other plots show the most frequent composers
and pieces of music in ChiM. The colours in each bar represent whether a piece
of music was an anecdote by the authors, a participant report of MECs, an
empirical verification of MECs, or a discussion of prior results.

Version 1.0.0 of ChiM includes 988 mentions of music confirmed to induce

MECs in at least one listener, which represents a much larger sample of music than

the one explored in Chapter 3, and was therefore well-suited for computational

analysis. As seen in Figure 4.1, the vast majority of ChiM consists of contributions

from a few individual articles, and we can observe a slight over-representation of

specific composers and pieces of music.

Features

Track-level audio features were collected using spotifyr (Thompson et al., 2020),

an R package which enables pulling track information from the Spotify Web

API. This allowed us to obtain, for most tracks, a range of features of interest,

including duration (in milliseconds) and popularity (based on number and recency

of plays), as well as nine track-level audio features: acousticness (confidence

that the track is acoustic), danceability (based on tempo, rhythm stability, beat

strength, and overall regularity), energy (based on dynamic range, perceived

loudness, timbre, onset rate, and general entropy), instrumentalness (confidence

that the track contains no vocal content), liveness (likelihood that the track was

performed live), loudness (overall loudness in decibels), speechiness (presence of

spoken words), valence (conveyed musical positiveness), and tempo (estimated in

beats per minute). While Spotify does not share details about how these audio

features are computed, they have been used successfully in previous research

(e.g., Mas-Herrero et al., 2018; Melchiorre & Schedl, 2020).
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4.2.2 Matching procedure

Chills source

We removed 136 duplicated tracks from ChiM, before looking up track information

by sending API queries for strings containing the artist (or arranger/interpreter,

as indicated in ChiM) and title of each track. The top result for each query

was retained, and used to pull the features described above. Throughout this

process, an additional 103 tracks were removed due to unavailability on Spotify

or missing audio features, resulting in a dataset of 749 tracks which can cause

MECs.

Matched source

Our analysis aimed to identify if specific track-level features were related to the

occurrence of MECs in ChiM. Therefore, a control set of tracks which do not

cause MECs was needed. Since it is impossible to assert that a specific track

never causes MECs for anyone, we approximated the construction of this control

set. More specifically, we compared features across tracks from the chills source

with features in another set of tracks, matched as fairly as possible with the

chills source by artist, duration, and popularity. This strict matching procedure

ensured there were as few differences as possible between both sets of tracks other

than their potential to elicit MECs. While it is possible that some tracks from

the matched source could elicit MECs as well (see Chapter 3 and the discussion

in this chapter for some limitations in our approach), it is unlikely that all of

them would, meaning that any difference detected between the two sets of tracks

should shed light on which factors affect the occurrence of MECs.

We decided to improve the matching approach used in Chapter 3 by imple-

menting an algorithmic matching method. First, we gathered potential matches

by getting the first 50 tracks for each of the first 50 albums returned by an API

query for each artist represented in the tracks from the chills source. Then, we

removed from these potential matches any track which was already present in

the chills source, by comparing Spotify track IDs across the two sets. However,

many duplicates remained across the two sets, since a piece of music on Spotify

can have several distinct track IDs or slightly different titles. In order to mitigate

this possibility, for each artist, we also removed from the potential matches any

track with a title that had any number or any word of four letters or more

(except the words major and minor) in common with tracks from the chills

source. This process resulted in a pool of 205,717 potential matches.

Finally, we standardised track duration and popularity across tracks from the

chills source and the potential matches. For each artist, the potential matches

with the shortest Euclidean distance from each track from the chills source for

107



Figure 4.2: A. Example of the matching procedure, using Pink Floyd tracks.
Tracks from ChiM are shown in orange, and potential matches gathered with
the Spotify Web API are shown in grey. Potential matches with the shortest
Euclidean distance from each track from the chills source, in terms of duration
and popularity, were selected as matches, shown in blue. B. Densities and
median values of audio features and metadata for the 722 resulting pairs of
tracks from the chills and matched sources. C. Boxplots showing valence for the
722 pairs of tracks, with lines linking valence scores for each individual pair.

these two standardised features were retained as the best matches. Audio features

were pulled for these 749 matches, but were missing for 10 of them. A further 17

matches were considered as outliers and removed for having Euclidean distances

larger than three standard deviations from the mean, resulting in 722 pairs of

tracks from the chills and matched sources. The matching procedure is illustrated

in Figure 4.2, and the full list of tracks from the chills and matched sources is

included in the supplementary materials of the published article corresponding

to this chapter (de Fleurian & Pearce, 2021).3

4.3 Analysis

The confirmatory analysis consisted of assessing whether there was a difference

in valence between tracks from the chills and matched sources. We ran a logistic

regression for the effect of the valence feature on track source (chills vs. matched).

The presence of influential data points was checked with leave-one-out diagnostics,

with the plan to run another logistic regression excluding data points that would,

if left out, affect the slope by at least half of its original absolute value.

The exploratory analyses were twofold. First, we assessed whether there

was a difference between tracks from the chills and matched sources in the

3This list of tracks is not included as an appendix to the present thesis due to its large size,
better suited for a CSV-formatted file.
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Figure 4.3: Correlation matrix, showing the high degree of collinearity between
each feature. Positive correlations are shown in blue and negative correlations in
green. Colour saturation corresponds to the magnitude of each correlation, and
the only non-significant correlation is indicated by a cross in the corresponding
cell.

nine audio features described earlier. Due to high collinearity between these

features (see Figure 4.3), we first ran a principal component analysis (PCA), a

method which projects each data point into a new dimensional space, the axes of

which are called principal components, and allows for dimensionality reduction

when retaining the first few components, which account for as much variance

in the data as possible. PCA was run with centring and scaling, resulting in

two principal components with eigenvalues above one—a common threshold to

decide which components to retain based on how much variance they explain

in the original data. We ran a logistic regression for the effects of these two

principal components on track source (chills vs. matched), checking influential

data points with leave-one-out diagnostics as described above.
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Second, we assessed whether the audio features of the tracks from the chills

source had an effect on the difference in valence between tracks from the chills

and matched sources, which could possibly mean that different types of MECs

arise in response to different auditory characteristics. As described above, we first

ran a PCA due to collinearity, before running a linear regression for the effects

of the two resulting principal components on the difference in valence between

the tracks from the chills and matched sources, using leave-one-out diagnostics,

and checking homoscedasticity and normality of residuals with residuals plots.

Finally, to check the robustness of the matching procedure, we conducted

Wilcoxon signed-rank tests to compare duration and popularity between tracks

from the chills and matched sources, expecting no significant differences in

duration and popularity. Nonparametric tests were chosen due to the fact that

duration and popularity did not follow a normal distribution (see Figure 4.2).

Since there were some differences between both sets of tracks (see Section 4.4),

we conducted mediation analyses, using the nonparametric bootstrap with 5000

Monte Carlo draws, as implemented in the mediation R package (Tingley et

al., 2014), to check if potential effects of the valence feature on track source

were mediated by track duration and popularity. Mediation analysis enables

the separation of the total effect into average causal mediation effect (ACME,

the indirect effect of the independent variable on the dependent variable that

goes through the mediator) and average direct effect (ADE, the direct effect of

the independent variable on the dependent variable). In addition, to mitigate

this weakness of the matching procedure, all the analyses described above were

replicated a total of 10 times, using a different set of matched sources, each

comprising one of the 10 tracks with the shortest Euclidean distance from each

track from the chills source (i.e., shortest Euclidean distance for iteration #1,

second shortest for iteration #2, etc.)

4.4 Results

Effect of valence on track source

A logistic regression model yielded a significant fit (χ2(1) = 6.33, p = .012,

Nagelkerke R2 = .006), revealing a significant effect of the valence feature on

track source (b = 0.54, Z = 2.51, p = .012), with the valence of tracks from

the chills source being lower than that of tracks from the matched source by

0.033 on a 0–1 scale (see Figure 4.2). This effect remained significant across

all 10 iterations of the analysis (mean valence difference = 0.042, SD = 0.009).

Results for the 10 iterations are shown in Table 4.1.
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Table 4.1: Effect of valence on track source

Model fit Valence

Iteration χ2 p Nagelkerke R2 b Z p

1 6.33 .012 .006 0.54 2.51 .012
2 12.04 < .001 .011 0.75 3.45 < .001
3 8.99 .003 .008 0.65 2.99 .003
4 5.13 .023 .005 0.51 2.26 .024
5 13.13 < .001 .012 0.80 3.60 < .001
6 6.42 .011 .006 0.56 2.53 .012
7 11.72 < .001 .011 0.75 3.40 < .001
8 15.46 < .001 .014 0.83 3.91 < .001
9 15.88 < .001 .015 0.86 3.96 < .001
10 14.98 < .001 .014 0.84 3.84 < .001

Mediating effects of duration and popularity

A Wilcoxon signed-rank test revealed no significant difference in duration (V =

137199, p = .232) and a significant difference in popularity (V = 134593, p = .003)

between tracks from the chills and matched sources (higher for the chills source

by 2.90 on a 1–100 scale), suggesting that the matching procedure did not result

in an optimal set of matched tracks. The difference in popularity remained

significant in all 10 iterations of the analysis, while the difference in duration

became significant in the fourth as well as the last five iterations of the analysis,

presumably due to the increasing Euclidean distance between tracks from the

chills source and each successive set of matched sources (see Table 4.2).

Table 4.2: Difference in duration and popularity between track sources

Duration Popularity

Iteration V p V p

1 137199 .232 134593 .003
2 142583 .051 145166 < .001
3 142185 .060 150597 < .001
4 146264 .005 152310 < .001
5 140323 .059 154629 < .001
6 141824 .026 159205 < .001
7 145974 .005 159076 < .001
8 144000 .013 162740 < .001
9 143062 .010 163894 < .001
10 144711 .004 165209 < .001

To assess whether duration and popularity mediated the effect of the valence

feature on track source as reported above, we conducted two separate causal

mediation analyses. For duration, the average causal mediation effect was

not significant (ACME = −.006, p = .716) and the average direct effect was
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significant (ADE = −.128, p = .021), suggesting that duration did not mediate

the effect of valence on track source. For popularity, both average effects were

significant (ACME = .037, p = .002; ADE = −.171, p < .001), suggesting that

popularity partially, but not fully, mediated the effect of valence on track source.

These results remained stable across the 10 iterations of the analysis, except for

duration, which partially mediated the effect of valence on track source in the

last iteration (see Table 4.3).

Table 4.3: Mediation analyses for the effect of valence on track source

Duration Popularity

Iteration ACME p ADE p ACME p ADE p

1 -.006 .716 -.128 .021 .037 .002 -.171 < .001
2 -.010 .503 -.173 .002 .049 < .001 -.232 < .001
3 -.012 .434 -.147 .004 .063 < .001 -.223 .001
4 -.028 .103 -.100 .095 .067 < .001 -.196 < .001
5 -.012 .419 -.184 < .001 .073 < .001 -.270 < .001
6 -.020 .232 -.118 .034 .072 < .001 -.209 < .001
7 -.019 .209 -.164 .002 .073 < .001 -.256 < .001
8 -.016 .267 -.189 < .001 .075 < .001 -.281 < .001
9 -.022 .145 -.188 .001 .073 < .001 -.285 < .001
10 -.032 .046 -.174 .002 .081 < .001 -.288 < .001

In this case, the mediation analyses each involved a linear regression (for

the effect of valence on duration/popularity) and a logistic regression (for the

effects of valence and duration/popularity on track source). It is worth noting

that for the linear models, some assumptions (homoscedasticity and normality

of residuals) were violated, as shown in Figure 4.4. This was most likely due to

the distribution of valence, duration, and popularity in our data (see Figure 4.2).

To confirm the results of the mediation analyses, we ran them again on a

reduced (keeping only tracks with non-zero popularity due to this feature being

zero-inflated) and transformed dataset (square root for popularity and log for

valence and duration). These re-analyses did not fully eliminate the violations of

assumptions for linear regression, but did replicate the findings presented above

(see Table 4.4).

Effects of audio features on track source

We ran a PCA to reduce collinearity in the nine audio features. We retained two

principal components with eigenvalues higher than one, accounting for 56.4%

of cumulative proportion of variance explained (see supplementary materials

discussed earlier in de Fleurian & Pearce, 2021, for the values for each set of

tracks). The first component featured high positive loadings (greater than .2) for

energy, loudness, valence, danceability, and tempo, and high negative loadings
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Figure 4.4: Diagnostic plots for a linear regression of the effect of valence on
track duration. Plots on the left show a violation of homoscedasticity in the
top residuals plot, and a violation of normality in the bottom Normal Q-Q plot
when using untransformed variables. Plots on the right show that, when using
log-transformed variables for valence and track duration instead, the assumptions
for linear regression were much better fulfilled. Note that these improvements
were not as noticeable for all models.

(lower than -.2) for acousticness and instrumentalness. The second component

featured high positive loadings for liveness and speechiness, and a high negative

loading for danceability. The number of retained principal components and

their associated loadings were consistent across all 10 iterations of the analysis

(besides occasional but systematic sign differences, which are expected when

conducting several PCAs—see Table 4.5).

A logistic regression model yielded a significant fit (χ2(2) = 6.47, p = .039,

Nagelkerke R2 = .006), revealing a significant effect of the first component

on track source (b = 0.06, Z = 2.34, p = .019) and no significant effect of

the second component (b = 0.05, Z = 0.98, p = .328), showing that tracks

from the chills source had lower scores than tracks from the matched source
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Table 4.4: Mediation re-analyses for the effect of valence on track source

Duration Popularity

Iteration ACME p ADE p ACME p ADE p

1 -.002 .656 -.023 .109 .010 .001 -.036 .010
2 -.005 .304 -.034 .024 .013 < .001 -.052 < .001
3 -.006 .136 -.019 .174 .017 < .001 -.043 .002
4 -.009 .086 -.024 .102 .020 < .001 -.052 < .001
5 -.006 .217 -.030 .032 .020 < .001 -.056 < .001
6 -.007 .094 -.017 .242 .021 < .001 -.045 < .001
7 -.008 .051 -.028 .058 .023 < .001 -.059 < .001
8 -.005 .198 -.028 .049 .023 < .001 -.056 < .001
9 -.008 .070 -.036 .014 .021 < .001 -.065 < .001
10 -.010 .026 -.036 .016 .026 < .001 -.072 < .001

on the first component (i.e., tracks from the chills source featured lower energy,

loudness, valence, danceability, and tempo, as well as higher acousticness and

instrumentalness—see Figure 4.5). The model fit remained significant in all but

one iteration of the analysis (χ2(2) = 5.33, p = .070, Nagelkerke R2 = .005), the

effect of the first component remained significant in all iterations, and the effect

of the second component became significant in four iterations, highlighting that

in some cases, tracks from the chills source had lower scores than tracks from

the matched source on the second component (i.e., low liveness and speechiness,

as well as high danceability). It is worth noting that in the seventh iteration of

the analysis, there were two influential data points (as described in Section 4.3).

For this iteration, we ran the model both with and without the influential data

points, leading to similar results in both cases (see Table 4.6).

Effects of audio features on difference between sources

We ran a PCA on the nine audio features of the tracks from the chills source only

(as opposed to both track sources in Section 4.4), to assess if properties of the

tracks from the chills source could predict the direction and magnitude of the

difference in the valence feature between both track sources. We retained two

principal components with eigenvalues higher than one, accounting for 55.6%

of cumulative proportion of variance explained. Both components featured

similar loadings as in the previous section. The number of retained principal

components and their associated loadings were consistent across all 10 iterations

of the analysis (see Table 4.7).

A multiple linear regression model yielded a significant fit (F (2, 719) = 63.9,

p < .001, adjusted R2 = .149), revealing a significant effect for both the

first component (β = .062, p < .001) and the second component (β = .039,

p < .001), suggesting that tracks from the chills source with higher scores on
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Table 4.5: PCA on audio features for all tracks

Audio feature loadings

PC I. Temp. Loud. Val. Danc. Ener. Acou. Inst. Spee. Live.

1 1 .242 .439 .353 .346 .457 -.419 -.291 .132 .134
2 .222 .444 .356 .346 .459 -.422 -.298 .128 .118
3 .233 .438 .350 .343 .458 -.421 -.289 .151 .142
4 .220 .447 .351 .341 .461 -.428 -.300 .112 .117
5 .221 .442 .356 .343 .461 -.422 -.297 .139 .117
6 .243 .439 .354 .338 .456 -.420 -.292 .153 .124
7 .231 .439 .346 .341 .459 -.425 -.301 .151 .115
8 .241 .437 .352 .348 .453 -.419 -.302 .135 .125
9 .220 .441 .356 .348 .456 -.421 -.293 .151 .124
10 .241 .438 .351 .351 .456 -.422 -.292 .130 .122

2 1 .119 -.083 -.178 -.275 .048 -.001 .105 .645 .665
2 .158 .078 .080 .148 .003 -.071 .046 -.660 -.706
3 .138 -.029 -.293 -.365 .081 -.051 .098 .548 .665
4 .075 -.052 -.240 -.300 .062 -.055 .020 .581 .706
5 .050 .019 .219 .324 -.063 .029 .013 -.567 -.719
6 .007 -.020 -.261 -.359 .076 -.048 .007 .498 .739
7 .043 -.010 -.276 -.363 .048 -.038 -.045 .543 .699
8 .037 .078 .150 .202 .017 -.046 .056 -.644 -.714
9 .052 -.075 -.173 -.267 .020 .012 .035 .612 .717
10 .088 .100 .101 .162 .007 -.051 .033 -.654 -.717

Note. PC = Principal component, I. = Iteration, Temp. = Tempo, Loud. = Loudness,
Val. = Valence, Danc. = Danceability, Ener. = Energy, Acou. = Acousticness, Inst.
= Instrumentalness, Spee. = Speechiness, Live. = Liveness.

these components were more likely to be happier than their associated tracks

from the matched source, and vice versa. These effects held for all 10 iterations

of the analysis (see Table 4.8).

4.5 Discussion

Results

In this experiment, we compared track-level audio features between tracks taken

from ChiM, a dataset of pieces of music known to elicit MECs, and several sets

of tracks algorithmically matched by artist, duration, and popularity.

We compared the valence feature between tracks from the chills and matched

sources, and found that valence was, on average, slightly lower in the chills source.

This echoes previous findings that MECs are more frequently associated with

perceived sadness (Panksepp, 1995), as opposed to perceived happiness (Grewe

et al., 2011). The matching procedure resulted in a small difference in valence

between track sources, but it is worth noting that overall, the distribution of

valence in ChiM is highly positively skewed, whereas it is relatively uniform

across all tracks on Spotify, as seen in the documentation for the valence feature

in the Web API.4 In other words, an effect of valence was identified despite the

application of a strict matching procedure, which most likely resulted in high

4https://developer.spotify.com/documentation/web-api

115

https://developer.spotify.com/documentation/web-api


Table 4.6: Effects of first two principal components on track source

Model fit Component 1 Component 2

Iteration χ2 p Nagelkerke R2 b Z p b Z p

1 6.47 .039 .006 0.06 2.34 .019 0.05 0.98 .328
2 10.39 .006 .010 0.07 2.42 .016 -0.11 -2.10 .036
3 6.57 .038 .006 0.07 2.51 .012 0.03 0.51 .612
4 13.04 .001 .012 0.07 2.63 .008 0.12 2.44 .015
5 9.00 .011 .008 0.07 2.76 .006 -0.06 -1.17 .243
6 5.33 .070 .005 0.06 2.15 .032 0.04 0.83 .404
7a 6.71 .035 .006 0.07 2.56 .010 0.02 0.37 .714
7b 6.96 .031 .006 0.07 2.61 .009 0.02 0.40 .687
8 13.28 .001 .012 0.07 2.74 .006 -0.12 -2.37 .018
9 7.20 .027 .008 0.07 2.61 .009 0.03 0.60 .551
10 12.53 .002 .012 0.07 2.69 .007 -0.12 -2.26 .024

Note. The analysis for iteration 7 was conducted with (7a) and without (7b) influential
data points.

similarity between tracks from the chills and matched sources. If control tracks

had been selected randomly instead, most tracks from the chills source would

have had a much lower valence by comparison.

When taking all audio features into consideration, we found that tracks

from the chills source were characterised by smaller values on a component

linked with high energy, loudness, valence, danceability, and tempo, as well

as low acousticness and instrumentalness, meaning that overall, tracks from

the chills source were sadder, slower, less intense, and more instrumental than

tracks from the matched source. In a few occasions, the chills source was also

characterised by smaller values on a second component linked with high liveness

and speechiness, as well as low danceability, therefore suggesting that music

that causes MECs may be less likely to include spoken words and to feature

a live audience, although these results were less robust than those for the first

component. These findings can be interpreted with reference to an influential

theory of the personality correlates of musical preference (Rentfrow et al., 2011),

which we briefly mentioned in Chapter 3. While music preference tests are

not necessarily best suited to studying the impact of stylistic preference on

the occurrence of MECs, as discussed in said chapter, it is worth noting that

the musical characteristics we identified in the present study strongly matched

sophisticated music, which tends to be relaxing, quiet, non-danceable, slow, non-

electric, and instrumental (Rentfrow et al., 2012), suggesting that tracks from

the chills source were more sophisticated than tracks from the matched source in

our analysis. Interestingly, preference for sophisticated music is associated with

openness to experience (Schäfer & Mehlhorn, 2017), a personality characteristic

strongly linked to the experience of MECs (see Chapter 2).
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Figure 4.5: Biplot of tracks from the chills and matched sources for the first
iteration of the analysis. Tracks are mapped onto the first two components
obtained with PCA. Some example tracks are shown for various combinations
of component values. Densities and median values for tracks from the chills
and matched sources are shown in marginal plots, revealing a difference on
Component 1. Audio feature loadings are shown as vectors, illustrating the high
degree of collinearity between some features.

We also examined whether the audio features of tracks from the chills source

related to the difference in valence between the chills and matched sources. We

found that tracks with higher energy, loudness, valence, liveness, and speechiness,

as well as lower acousticness and instrumentalness, were more likely to feature

higher expressed happiness than their associated matched tracks, and vice versa.

While these results are partly explained by valence loading on the first component

obtained with PCA, the involvement of other audio features suggests a potential

interpretation. Using the same classification as above (Rentfrow et al., 2012), it

becomes apparent that, on average, sophisticated tracks from the chills source

were sadder than their matched tracks, and intense tracks from the chills source
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Table 4.7: PCA on audio features for tracks from the chills source only

Audio feature loadings

PC I. Temp. Loud. Val. Danc. Ener. Acou. Inst. Spee. Live.

1 1 .251 .440 .345 .339 .463 -.419 -.283 .155 .126
2 .249 .440 .346 .336 .463 -.420 -.283 .158 .127
3 .249 .440 .347 .335 .463 -.421 -.283 .157 .125
4 .247 .441 .346 .334 .464 -.421 -.282 .153 .129
5 .249 .440 .346 .337 .463 -.420 -.281 .156 .129
6 .253 .439 .344 .337 .463 -.420 -.282 .157 .125
7 .250 .440 .346 .335 .463 -.421 -.282 .158 .126
8 .250 .440 .346 .335 .463 -.421 -.282 .158 .126
9 .249 .439 .346 .334 .463 -.421 -.285 .159 .126
10 .250 .438 .345 .338 .462 -.420 -.286 .155 .127

2 1 .014 .088 .149 .265 -.020 -.007 -.037 -.650 -.690
2 .008 .083 .164 .283 -.030 .004 -.049 -.646 -.682
3 .009 .081 .164 .281 -.029 .004 -.047 -.646 -.684
4 .005 .084 .162 .284 -.030 .005 -.049 -.654 -.674
5 .025 .086 .148 .273 -.024 -.005 -.040 -.648 -.688
6 .016 .086 .157 .269 -.024 -.004 -.040 -.647 -.689
7 .015 .088 .152 .274 -.025 -.001 -.047 -.646 -.688
8 .015 .088 .152 .274 -.025 -.001 -.047 -.646 -.688
9 .009 .084 .162 .277 -.028 .000 -.052 -.646 -.685
10 .011 .082 .160 .277 -.031 .000 -.048 -.650 -.682

Note. PC = Principal component, I. = Iteration, Temp. = Tempo, Loud. = Loudness,
Val. = Valence, Danc. = Danceability, Ener. = Energy, Acou. = Acousticness, Inst.
= Instrumentalness, Spee. = Speechiness, Live. = Liveness.

(i.e., non-relaxing, loud, electric, and featuring raspy or yelling voice) were

happier than their matched tracks. In other words, the directionality of the

difference in valence between both sets of tracks was determined by the degree

to which tracks from the chills source were relaxing, quiet, and instrumental.

As is the case with sophisticated music, intense music is linked with openness

to experience (Schäfer & Mehlhorn, 2017), a known personality correlate of

MECs. Interestingly, these results provide some support for the possibility that

different types of MECs are elicited by different types of feelings and affective

states expressed or evoked by music (Bannister, 2019; Maruskin et al., 2012),

and for the possible presence of several pathways for the experience of MECs

(see Chapter 2).

Limitations

We discussed the rationale and some limitations of the matching procedure

in Section 4.2.2. Notably, despite our best efforts, tracks from the matched

source were slightly less popular than their counterparts. This could be due to

MECs being more likely in popular tracks, either because the repeated listening

associated with track popularity contributes to the elicitation of MECs, or

because the ability to elicit MECs contributes to tracks becoming popular. In

our opinion, however, this difference is most likely due to a bias towards popular

tracks when reporting music which causes MECs. It should be possible to reduce
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Table 4.8: Effects of components on difference in valence between sources

Model fit Component 1 Component 2

Iteration F p Adjusted R2 β p β p

1 63.9 < .001 .149 0.062 < .001 0.039 < .001
2 62.5 < .001 .145 0.059 < .001 0.040 < .001
3 65.2 < .001 .151 0.063 < .001 0.033 .002
4 64.8 < .001 .150 0.059 < .001 0.031 .002
5 55.7 < .001 .132 0.057 < .001 0.028 .007
6 47.5 < .001 .115 0.052 < .001 0.026 .012
7 51.8 < .001 .124 0.055 < .001 0.033 .002
8 51.4 < .001 .123 0.057 < .001 0.035 .002
9 51.7 < .001 .124 0.058 < .001 0.033 .003
10 55.2 < .001 .131 0.058 < .001 0.035 .001

this difference by picking matched tracks from a larger set of potential matches,

but our current methods did not allow this due to limits on the rate of Spotify

API requests and the number of records per request. As a result, we found that

popularity partially, but not fully, mediated the difference in valence between

both sets of tracks. This could be interpreted as sad songs being more popular

(see Gulmatico et al., 2022), and in turn, popular songs being more likely to

cause MECs. However, the mediation analyses were not part of the planned

primary analysis, but rather only intended as a procedural check, and we suspect

the identified mediating effects were largely due to the idiosyncrasies of our data.

Moreover, there was still a residual direct effect of valence in our analysis, which

should not be overlooked. Nonetheless, we attempted to address any limitations

in the matching procedure by conducting 10 iterations of the full analysis with

different sets of matched sources, which led to consistent results across iterations.

There were other limitations to our approach. ChiM does not report the

exact version of the pieces of music that elicit MECs, which could have had

some impact on the audio characteristics of the tracks from the chills source.

Then, some tracks from the chills source might have been present in the matched

source, despite our efforts to limit this possibility (see Section 4.2.2). In general,

apart from a few sanity checks, we considered the lack of manual verification of

our data as an acceptable trade-off for the large size of the dataset, which made a

robust computational analysis possible. Another issue is the lack of transparency

about how Spotify computes audio features. Again, we accepted this trade-off

which allowed us to collect large amounts of audio data and metadata through

API queries.

More importantly, and as initially suspected following the results presented

in Chapter 3, effect sizes were small for most of our results. One possible

explanation is that we tried to be as fair as possible with the matching procedure,
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which might have drastically reduced the differences in audio features between

tracks from the chills and matched sources—effect sizes would probably have

been more pronounced if we randomly selected matches, but this process would

have introduced noise due to confounding differences between both track sources.

Also, as highlighted in Chapter 3 and Section 4.2.2, it is possible that some tracks

from the matched source also had the ability to elicit MECs. Finally, MECs

are a localised phenomenon, and it is fully expected that track-level features

would not capture local changes in acoustic and structural features, therefore

limiting the explanatory power of our approach. However, we believe that the

consistency of the results across several iterations of the analysis on different

sets of matched sources yielded robust and interpretable findings, despite their

small effect size.

Conclusion

We conducted a corpus analysis of audio characteristics of music known to elicit

MECs and identified that such music was sadder than music matched by artist,

duration, and popularity. Exploratory analyses revealed that tracks from the

chills source were also slower, less intense, and more instrumental than tracks

from the matched source on average, and tended to possess the characteristics of

sophisticated music. Moreover, within the chills source, we identified a possible

relationship between valence and type of music, with sophisticated music tending

to be sadder than tracks from the matched source, and intense music tending to

be happier. Taken together, these findings provide further support for an effect

of perceived valence on the occurrence of MECs, and for a possible pathway for

the experience of MECs involving the psychological mechanism of emotional

contagion and the process of being moved. However, they do not exclude the

possibility of separate pathways (see Chapter 2).

Overall, these results showed that, for research on MECs, computational

methods have a great and largely untapped potential to complement behavioural

studies. More specifically, such methods were able to identify that, when looking

at track-level characteristics, music that causes MECs differed in musical content

from other music, which motivates further computational investigation into

the local acoustic and musical elicitors of MECs, as conducted in Chapter 5.

Regarding future directions in research on MECs and valence, some questions

remain. Notably, it would be worth investigating the effect of local changes in

valence on MECs as opposed to track-level aggregates, which would provide

further insight into the interaction between global context (e.g., music that is

happy or sad, sophisticated or intense) and local events (e.g., specific happy or

sad passages).
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Chapter 5

Musical expectation

As opposed to the work presented in Chapter 3, the study discussed in Chapter

4 led to the identification of differences between tracks previously reported as

being able to cause MECs and tracks matched to those by artist, duration, and

popularity, lending support to the intuition that such differences are more easily

detected using computational methods on a large corpus of music. The work

presented so far has considered each piece of music as a single data point, i.e.,

each piece of music was characterised by a one-dimensional vector of extracted

features and behavioural responses. But, as discussed in Chapter 2, MECs

correspond to transient events occurring dynamically at particular points within

a piece of music.

This chapter presents a computational analysis aimed at modelling the onset

of MECs based on acoustic and musical characteristics (see Chapter 2). We

used the dataset of pieces of music initiated in Chapter 3, labelled with onsets

of MECs, and extracted features corresponding to previously identified acoustic

and musical elicitors of MECs, as well as features capturing widely hypothesised

elicitors of MECs, such as musical expectation. In the first part of the present

study, we ran a series of permutation tests for each feature around the onsets

of MECs, confirming in a systematic way, and at a much larger scale, the

correlational effects that have been identified in previous research. In the second

part, we compared the performance of two classification approaches, by training

two different types of models on excerpts centred around the onsets of MECs

and randomly selected excerpts from the same pieces of music, and testing these

models in an automatic MEC onset detection task, resulting in the findings that

the onsets of MECs could be predicted better than chance, and that musical

expectation was the most effective predictor of MECs.
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5.1 Introduction

A major motivation for the present study was to compare the predictive per-

formance of the previously identified elicitors of MECs. In order to do so, it is

worth expanding on Chapter 2 by briefly reviewing these elicitors with a view to

selecting a list of appropriate features for the analyses presented in this chapter.

Acoustic elicitors

Acoustic elicitors of MECs refer to low-level properties of the auditory signal. In

early research on MECs, Sloboda (1991) identified a relationship with sudden

dynamic changes, by analysing music scores for passages reported to elicit MECs

by survey participants. This relationship was confirmed empirically in subsequent

research (Auricchio, 2017; Bannister & Eerola, 2018; Beier et al., 2020; Grewe

et al., 2007; Guhn et al., 2007; Honda et al., 2020; Nagel et al., 2008; Polo,

2017), in which loudness was extracted (or manually inspected from music scores

in the case of Guhn et al., 2007) around the onset of MECs experienced by

participants when listening to music in a lab environment, which they reported

either retrospectively, or continuously by pressing a button or moving a slider.

Loudness is by far the most documented acoustic correlate of MECs, but

other relationships were also identified using similar methods, suggesting that

occurrences of MECs tend to correlate with increases in roughness, dissonance,

or fluctuation strength (Bannister & Eerola, 2018; Beier et al., 2020; Grewe et al.,

2007; Nagel et al., 2008; Park et al., 2019), increases in sharpness or brightness

(Bannister & Eerola, 2018; Beier et al., 2020; Grewe et al., 2007; Honda et al.,

2020), high spectral centroid and spectral flux (Bannister & Eerola, 2018), high

event density (Bannister & Eerola, 2018; Nagel et al., 2008; Polo, 2017), or

expansion of the frequency range in a high or low register (Guhn et al., 2007;

Polo, 2017).

In a recent study, Bannister (2020c) experimentally manipulated loudness

and brightness in two musical passages that had elicited MECs in previous

research (Bannister & Eerola, 2018). It was found that in one of the musical

passages, MECs were experienced more frequently if loudness was increased, or

if brightness was decreased (in contradiction with previous findings), therefore

demonstrating a causal effect of loudness and brightness on MECs, as opposed

to the correlational findings discussed above.

Musical elicitors

Musical elicitors of MECs refer to high-level properties of the musical structure.

Sloboda (1991), in the same study discussed above, identified that musical
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passages causing MECs also included new or unprepared harmonies, sudden

textural changes, melodic appoggiaturas, enharmonic changes, specific melodic

or harmonic sequences, or prominent events arriving earlier than prepared for,

in decreasing order of frequency.

These self-reported effects of melodic and harmonic properties on MECs

were confirmed in subsequent survey-based and empirical research (Auricchio,

2017; Bannister, 2020b; Bannister & Eerola, 2018; Guhn et al., 2007; Mlejnek,

2013; Schurtz et al., 2012), notably through the identification of an effect of

structural transitions and alterations such as changes in tonality (Bannister,

2020b). Rhythmic properties (Schurtz et al., 2012; Solberg & Dibben, 2019) and

vocals (Bannister, 2020b; Schurtz et al., 2012) were also found to be involved,

although there is a lack of specificity regarding which exact properties were

associated with MECs.

Additional findings revealed effects of crescendi, build-ups, and climaxes

(Auricchio, 2017; Bannister, 2020b; Bannister & Eerola, 2018; Panksepp, 1995;

Polo, 2017; Solberg & Dibben, 2019), as well as textural changes (Auricchio,

2017; Polo, 2017; Sloboda, 1991; Solberg & Dibben, 2019), notably through

the entrance of new instruments or the interplay between solo and background

instruments (Auricchio, 2017; Bannister, 2020b; Bannister & Eerola, 2018;

Goodchild et al., 2019; Guhn et al., 2007; Mlejnek, 2013).

Emotional elicitors

It is also worth mentioning emotional elicitors of MECs, which refer to subjec-

tively perceived valence, emotionality, and meaning in music (see Chapter 2).

These characteristics of musical stimuli are difficult to quantify precisely and

objectively, especially as continuous features, since they rely on some degree of

subjective interpretation. Acoustic and musical elicitors, however, refer to prop-

erties of the auditory signal and of the musical structure that do not exclusively

rely on subjective judgements.

For this reason, emotional elicitors were not considered in the present study,

but we acknowledge that they are considered potent elicitors of MECs, and

deserve further attention in future research.

Expectation and chills

As discussed in Chapter 2, findings about musical elicitors have often been

placed in the context of a hypothesised effect of musical expectation on MECs

(L. Harrison & Loui, 2014; Huron, 2006; Huron & Margulis, 2010; Juslin, 2013;

Juslin & Västfjäll, 2008; McDermott, 2012; Mencke et al., 2019; Pearce &

Wiggins, 2012; Salimpoor et al., 2011; Sloboda, 1991), positing that most of the
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musical elicitors listed above could be related to violations of expectation, and

in turn, to experiences of MECs.

An effect of musical expectation on emotional responses to music has long

been hypothesised (Hanslick, 1854; Meyer, 1956), and has since been confirmed

in empirical studies (Cheung et al., 2019; Egermann et al., 2013; Gold et al.,

2019; Huron, 2006; Juslin, 2013; Sauvé et al., 2018; Steinbeis et al., 2006). The

effect of expectation on MECs, however, remains untested.

Automatic detection of chills

While the findings presented above represent a wide range of elicitors which are

associated with MECs, most of these findings are qualitative or correlational

in nature. In addition, elicitors were often identified by subjective analysis of

music scores, and based on a relatively small amount of data. Despite these

limitations, the degree of consensus for their effects on MECs suggests that

automatic detection of MECs based on these elicitors might be possible.

The predictive modelling of continuous responses such as MECs, in addition

to having received little attention in prior research (Eerola, 2018), requires large

amounts of data, given the complexity in how acoustic and musical characteristics

vary over time and interact with each other. This is especially relevant when

also trying to investigate the relative influence of each individual elicitor on the

occurrence of MECs.

While the ChiM dataset used in Chapter 4 is suitably large for such a task, it

lacks consistent information about the exact versions of the pieces of music which

elicit MECs, as well as precise information about the timing of MEC onsets.

Using the dataset introduced in Chapter 3 addresses both of these challenges.

Objectives

The present study aimed to extract and process features representing acoustic

and musical elicitors of MECs from an empirical dataset of onsets of MECs, to

conduct a robust analysis of the effects of these elicitors on the occurrence of

MECs, expecting these effects to replicate previous findings, and to uncover new

evidence about an effect of musical expectation on MECs.

In addition, this chapter reports the design of a computational system for

the automatic detection of MECs, which we expected to perform better than

chance when predicting onsets of MECs based on acoustic and musical features.

This system allowed the investigation of feature importance when predicting

MEC onsets, through which we expected to observe a large influence of musical

expectation. The models were cross-validated as a part of the training process,

therefore reducing uncertainty in the findings due to the exploratory nature of
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this part of the present study.

First, we describe the additional data obtained through the survey study

described in Chapter 3. Then, we outline a set of features that broadly covered

the range of elicitors discussed above. Finally, we detail the construction of

analyses and models with the aim to provide a large-scale replication of current

findings about the elicitors of MECs, to rank their importance in the elicitation

of MECs, and to test the hypothesised effect of musical expectation on MECs.

5.2 Methods

5.2.1 Stimulus selection

Dataset

In order to collect a sufficient amount of training samples, considering the large

number of features planned for model training, we left the survey study described

in Chapter 3 running on Qualtrics (Qualtrics, Provo, UT) between February

2018 and April 2020. We collected a large number of self-reports of onsets of

MECs from 2069 participants (including the 221 participants from Chapter 3)

ranging in age from 18 to 77 years (M = 23.6 years, SD = 8.8 years), and

originating from a wide range of geographical areas (62 % North America, 25%

Europe, 8% Asia, 3% Oceania, 1% Africa, 1% South America).

The resulting data required extensive manual cleaning. First, we removed

entries from participants who abandoned the survey study before providing

any piece of music, resulting in 1398 pieces of music being retained. Second,

we removed entries which were not changed from the default answers provided

in the questionnaire. Third, we processed the onsets of MECs, notably by

converting time ranges to individual onsets, by removing some extraneous

qualitative comments about specific musical characteristics leading to MECs,

and by discarding a few entries which were higher than total track duration.

Finally, we cleaned the URLs by removing further qualitative comments and by

discarding non-valid URLs. This process resulted in retaining 1187 out of the

1398 reports of pieces of music causing MECs, corresponding to 1150 unique

pieces of music associated with 2028 onsets of MECs.

Out of these, 1019 unique pieces of music could be retrieved for the present

study, corresponding to 1806 onsets of MECs. We have made the data for these

pieces of music available in Onsets of Chills in Music (oChiM), a dataset hosted

permanently on the Open Science Framework.1

1oChiM is available at https://doi.org/10.17605/osf.io/x59fm
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Stimulus preparation

In order to be suitable for auditory feature extraction, tracks were retrieved as

WAV files, downmixed to mono, and downsampled to 44.1 kHz when necessary,

using the tuneR R package (Ligges et al., 2018). RMS normalisation was then

applied to all tracks simultaneously, using the soundgen R package (Anikin,

2019). This process consisted of rescaling all audio files so that they had the

same peak amplitude, set at 0 dB, and rescaling them linearly once more so that

the RMS amplitude of each file matched that of the file with the lowest RMS

amplitude.

5.2.2 Feature extraction

Based on the acoustic and musical elicitors of MECs reviewed above, we extracted

a range of features which we believed most closely captured notions of loudness,

roughness, brightness, spectral centroid and flux, event density, frequency range,

crescendi, tonality, harmony, texture, expectation, and the presence of vocals.

MiningSuite

Most features were extracted using MiningSuite (Lartillot, 2019), a MATLAB

framework for the analysis of audio and music recordings, which expands on

the methods provided by the commonly used MIRtoolbox (Lartillot et al., 2008).

Default settings for frame size were used for these features, as detailed below.

Loudness and crescendi were approximated with the aud.envelope function,

which consists of a generic envelope extraction method, further processed follow-

ing a model of human auditory perception (Klapuri et al., 2006). The feature

was extracted with a frame size of 10 ms, corresponding to a sampling rate of

100 Hz.

Spectral frame decomposition was then applied using the sig.spectrum func-

tion, which applies a Fast Fourier Transform to the audio waveforms of each

file, using a sliding window size of 50 ms with 25 ms overlap. This spectral

decomposition was used to approximate the following elicitors: roughness with

the aud.roughness and sig.flatness features, respectively estimating sensory

dissonance and spectral smoothness; brightness with the aud.brightness and

sig.centroid features, the former capturing the amount of high-frequency energy

in the signal and the latter more broadly capturing spectral centroid (the centre

of mass of the spectrum—another elicitor of interest); spectral flux with the

sig.flux feature, calculating the spectral distance between successive frames; event

density with the sig.entropy feature, computing the relative Shannon entropy

of the input (Shannon, 1948); and frequency range with the sig.spread feature,

126



capturing variance in the spectrum. These features were all extracted using the

same sliding window size of 50 ms with 25 ms overlap as the initial spectral

decomposition.

Tonality was approximated with the mus.key feature, which estimates tonal

centre positions by choosing the highest key candidate from a key strength curve,

itself computed by correlating the chromagram of the signal with known key

profiles (Gómez, 2006; Krumhansl, 1990). This feature used a sliding window

size of 1 s with 0.5 s overlap. Finally, to approximate harmonic change, a

six-dimensional tonal centroid was first extracted using the mus.tonalcentroid

function, corresponding to chord projections on the circle of fifths, minor thirds,

and major thirds, before being processed with the mus.hcdf harmonic change

detection function (HCDF), which returns the flux of the tonal centroid, using

the default settings of a 743 ms sliding window size with 74.3 ms overlap.

Due to the computationally intensive nature of extracting many features

from many tracks, the scripts were run in parallel on a series of Linux-based

compute servers provided by Queen Mary University of London.

Spleeter

To generate a continuous, binary feature representing the presence of vocals,

tracks were first processed using the Spleeter source separation library (Hennequin

et al., 2020), written in Python. The library provides pre-trained models to

perform source separation of a music track into two, four, or five stems containing

separate instruments. For the present study, two-stem separation was conducted,

resulting in two separate tracks containing vocals and accompaniment for each

track.

We applied an amplitude threshold to the tracks containing vocals only, in

order to generate a binary feature reflecting the absence or presence of vocals

which would discard the small amount of residual noise left in the tracks. In

practice, since amplitude is characterised by a high degree of zero-crossing, which

is not suitable for thresholding, we first computed the loudness of the vocals

from their amplitude using the soundgen R package, which provides a function

allowing the estimation of subjective loudness in sones (a psychoacoustic unit of

perceived loudness) for each 20 ms sliding window with 50% overlap, resulting in

a value capturing subjective loudness every 10 ms. To prevent the application of

a loudness threshold from returning an overly sensitive vocals detection feature,

we then applied a rolling maximum filter with a span of 510 ms for each track,

before finally applying a loudness threshold, categorising vocals as present if

above 2.5 sones, and absent if not. This thresholding process is visualised in

Figure 5.1, and resulted in a continuous, binary feature representing the presence
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Figure 5.1: Vocals thresholding process. Data is shown for a short, 40-second
excerpt in order to illustrate the thresholding process used to identify the presence
of vocals. The top row shows the amplitude of the wave form of the vocals track
extracted using Spleeter on the left, and an estimate of subjective loudness on
the right. The bottom row shows the results of applying a loudness threshold at
2.5 sones with no rolling maximum filter on the left, a rolling maximum filter
with a 50 ms span in the middle, and the same filter with a 510 ms span on the
right. Several combinations of values were tested before the values used in the
last plot were retained, as they were deemed to most closely approximate what
manual annotation would return.

of vocals with a frame size of 10 ms.

Note that both the 510 ms value for the span of the maximum filter and the

2.5 sones value for the loudness threshold were chosen manually, after comparing

the outputs when changing these two parameters. A systematic validation was

not possible due to the absence of labelled data in our sample. However, we

conducted several manual checks on a representative set of recordings, and

deemed the feature resulting from these parameters as close as possible to what

would have resulted from manual annotation of the tracks. This allowed us

not to allocate a disproportionate amount of time to the extraction of a single

feature in the wider context of the present analysis. Note also that, while this

feature is sensitive to differences in loudness between tracks, such concerns were

mitigated by the fact that RMS normalisation was conducted prior to this step

of the analysis.

IDyOM

Finally, in order to extract information about melodic expectation, it was

necessary to extract melodies in MIDI format from each audio track. First,

the time-series of continuous frequency values in Hz was extracted for each
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melody using the MELODIA plugin (Salamon & Gómez, 2012) for Vamp,2 via

its associated vamp Python library.3 MELODIA enables the estimation of the

fundamental frequency of the pitch of the primary melody in polyphonic tracks,

and was therefore particularly well-suited for this task.

Then, a simple heuristic provided by the author of MELODIA4 was re-

implemented in R in order to quantise pitch frequencies into discrete MIDI notes.

This heuristic consisted of converting each value in Hz to its closest MIDI note

before applying a median filter with a 250 ms span in order to remove some of

the noise in the underlying data, and finally discarding notes shorter than 100

ms in duration. The resulting MIDI notes were stored in a text file suitable for

the next step of the feature extraction process, while note onsets were stored in

a reference file separately to convert the extracted features back to time-series

suitable for model training.

IDyOM, standing for Information Dynamics of Music (Pearce, 2005, 2018),

was used to extract information about melodic expectation from these sequences

of MIDI events. IDyOM is a system based on variable-order Markov models,

which learns from the statistical regularities in symbolic, sequential events such

as MIDI representations of melodies, and applies that knowledge to estimate the

likelihood of each event within a sequence. This takes the form of two distinct

measures, among other outputs of the model: entropy, a measure of uncertainty

about which event is predicted to come next given the current context at a

specific position in a sequence, and information content, a measure of the amount

of information that is provided by an event given its previous context, which can

therefore be used to quantify the surprisal of the event. For instance, if at time

t− 1 in a melody, the system is very certain about which note comes next, this

will be reflected by low entropy for that note occurring at time t. If the actual

note in the sequence was indeed very predictable, this will be reflected by low

information content, but if it was unexpected instead, information content will

be high.

IDyOM provides a multiple-viewpoint system, which allows sequences to be

modelled based on a range of melodic and rhythmic properties, such as pitch,

chromatic pitch interval, contour, onset, duration, inter-onset interval, and many

more. Options are provided for model training, including training a separate

model on each sequence to make predictions for that sequence only (short-term

model, capturing dynamic expectation), pre-training a model on a given corpus

of sequences (long-term model, capturing schematic expectation), or combining

both of these approaches. IDyOM has been the subject of substantial empirical

2https://vamp-plugins.org
3https://pypi.org/project/vamp
4https://github.com/justinsalamon/audio to midi melodia
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Figure 5.2: List of features extracted from each track. The features are shown
in rectangular boxes with coloured backgrounds, corresponding to which tool
was used to extract them. The acoustic and musical elicitors of MECs they aim
to characterise are shown in white rectangular boxes (using the abbreviations
freq. for “frequency”, spec. for “spectral”, and ev. for “event”), along with the
hypothesised direction of their respective effects, as identified from prior research
and shown with the following symbols: ∆ for changes, ↑ for increases or elevated
levels, and ↔ for expansions. The outer rectangles represent the two feature
sets used for model training, as described later in the present chapter.

testing, and was found to accurately predict melodic expectation in a range of

experiments (for an extensive review, see Pearce, 2018).

In the present study, the cpint viewpoint (chromatic pitch interval) was

derived from the cpitch viewpoint (MIDI pitch number), in order to capture

the entropy and information content of each MIDI event based on chromatic

pitch interval. The model used a combination of the short-term and long-term

models, with the long-term model being trained on a set of folk ballads from

Nova Scotia, Bach choral melodies, and German folk songs from the Essen Folk

Song Collection (for a description of this corpus, see Pearce, 2005). The resulting

entropy and information content values associated with each MIDI event for each

tracks were linked back to the note onsets previously kept aside in a reference

file, allowing these values to be converted to continuous features synchronised

with the tracks.

The whole feature extraction process is visualised in Figure 5.2, along with

the source of the features and the elicitors they were intended to approximate.

5.2.3 Feature preparation

Key distance

Most features required additional processing in order to capture the hypothesised

elicitors laid out in prior research. Tonality, notably, is only thought to affect

the occurrence of MECs in occasional cases of changes in tonality. However, the
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current feature extracted with mus.key only captured the tonal centre at a given

time, which should have no bearing on the occurrence of MECs. We decided

to compute key distance from this feature, following the intuition that more

unexpected changes in tonality might be more conducive to experiencing MECs.

To do so, we first smoothed the feature by applying majority voting with a 3.5 s

span, before assigning a value to tonality changes based on distance on the circle

of fifths. For instance, if the tonal centre at time t− 1 was C, the key distance

at time t would be 0 if the tonal centre remained C, 2 if it changed to D, or a

maximum of 6 if it changed to F#. The feature was then upsampled to 100 Hz

for consistency with the other features, replacing the newly introduced missing

values by their nearest existing key distance value.

Interpolation and smoothing

Cubic spline interpolation was applied to all the other auditory features extracted

with MiningSuite in order to match this 100 Hz frame rate, with the exception

of envelope, which was already sampled at 100 Hz. Care was taken only to allow

the addition of new values in the gaps between two existing values, in order

to prevent cubic spline interpolation from returning wildly unlikely values at

the very beginning and end of each track, where more missing values might be

found. Following this, all features (including envelope) were smoothed by using

a median filter with a span of 50 ms.

First-order difference

As discussed earlier (and seen in Figure 5.2), many elicitors of MECs refer to

changes in acoustic and musical properties, as opposed to specific values. To

allow the analyses in the present study to detect this behaviour, first-order

differences were computed for each feature and also included in the analyses,

such that if a feature had a value of 3 at time t− 1 and a value of 7 at time t,

its first-order difference at time t would be 7− 3 = 4.

Segmentation

In order to speed up computations for the planned analyses, and to investigate

both central tendencies and variance for each feature, summary statistics were

computed over successive segments for each feature. All analyses in the present

study were run twice: once with a segment size of 200 ms, and once with a

segment size of 500 ms, since there was no information to determine a priori

which segment size would work best to investigate the occurrence of MECs. For

each segment, the mean and standard deviations were computed, resulting in

four dimensions for each original feature: µ0 and σ0, the mean and standard
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deviation of the original values, and µ1 and σ1, the mean and standard deviation

of the first-order difference. Note that due to the way key distance was generated,

standard deviations were not computed as they would not contain any meaningful

information. In the present study, µ0 can be thought of as the original feature,

σ0 as the variance in that feature, µ1 as the rate of change in the feature, and

σ1 as the variance in that rate of change.

In addition, we predicted that for three features (envelope, HCDF, and key

distance), changes on a slower time scale might better capture their hypothesised

role as elicitors of MECs. These features were therefore also segmented using

a 2 s sliding window with 50% overlap, and upsampled to both 200 ms and

500 ms frame sizes, in order to be included in both sets of analyses. The full

list of features is shown in Table 5.1. These features were used for both sets of

analyses—one with features using a 200 ms frame size, and one with features

using a 500 ms frame size, as a result of the two different types of segmentation.

The table includes display names for each feature, which are used for plotting

the results in the rest of the present chapter due to space constraints within the

plots. The computed features have also been made available on oChiM.5

Table 5.1: Display names for features included in both sets of analyses

Tool Feature category Features

µ0 σ0 µ1 σ1

MiningSuite Envelope µ0env σ0env µ1env σ1env
Envelope + µ0env+ σ0env+ µ1env+ σ1env+
Roughness µ0rough σ0rough µ1rough σ1rough
Flatness µ0flat σ0flat µ1flat σ1flat
Brightness µ0bright σ0bright µ1bright σ1bright
Spec. centroid µ0spcent σ0cent µ1cent σ1cent
Spec. flux µ0spflux σ0flux µ1flux σ1flux
Spec. entropy µ0spent σ0spent µ1spent σ1spent
Spec. spread µ0spspr σ0spspr µ1spspr σ1spspr
Key distance µ0kdist µ1kdist
Key distance + µ0kdist+ σ0kdist+ µ1kdist+ σ1kdist+
HCDF µ0hcdf σ0hcdf µ1hcdf σ1hcdf
HCDF + µ0hcdf+ σ0hcdf+ µ1hcdf+ σ1hcdf+

Spleeter Vocals µ0voc σ0voc µ1voc σ1voc
IDyOM Mel. entropy µ0melent σ0melent µ1melent σ1melent

Mel. IC µ0melic σ0melic µ1melic σ1melic

Note. Four types of features for each feature category. µ0 = mean of the original
values, σ0 = standard deviation of the original values, µ1 = mean of the first-order
difference, σ1 = standard deviation of the first order difference, + = feature segmented
using a longer, sliding window, Spec. = Spectral, Mel. = Melodic, IC = information
content.

5https://doi.org/10.17605/osf.io/x59fm
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5.3 Analysis

5.3.1 Permutation tests

In order to identify patterns in the behaviour of each feature around the onset of

MECs, we ran a series of permutation tests (for a similar approach, see Grewe

et al., 2009b). As previously discussed in Chapter 3, permutation tests consist of

identifying a test statistic that captures the dimension we want to measure, and

generating a null distribution by permuting samples, in order to assess whether

or not the observed results were unlikely enough to reject the null hypothesis.

Here, we explored each feature by evaluating how unlikely their values were

around the onset of MECs, when compared to other moments within the tracks

which were not reported as causing MECs.

To do so, we extracted all 20-second excerpts centred around the onsets

of MECs from each track. We only retained complete excerpts, meaning that

onsets of MECs within the first or last 10 seconds of each track were discarded.

Rather than choosing individual control excerpts for each excerpt causing MECs,

we split every track into sequential 20-second excerpts, discarded every excerpt

which was not complete, or partially or fully overlapped with any of the excerpts

causing MECs, and retained all the remaining excerpts as controls. This process

therefore resulted in two unbalanced sets of 20-second excerpts, capturing 10

seconds before and after each onset of MECs for one set, and almost all other

moments within the tracks for the control set.

The test statistic was computed for each frame of each feature, and consisted

of the difference between the average values for excerpts causing MECs and

control excerpts. Two-tailed permutation tests were run by randomly permuting

the excerpts while keeping the same number of excerpts in each set, using Monte

Carlo estimation with 5000 replications. We only ran the permutation tests on

the data with a 500 ms frame size in order to limit the number of comparisons

we would draw, and we used Bonferroni correction within each feature, to further

mitigate the fact that, even with a 500 ms frame size, 41 significance tests would

be required for each feature.

5.3.2 Principal components analysis

We trained models to assess whether or not the onsets of MECs could be predicted

using audio-derived acoustic and musical features, and if so, which features were

most important in driving such predictions. In addition to the two types of

segmentations discussed above, we evaluated two types of models (described

later in this section), on two sets of features. The first set of features did not

include the IDyOM features, while the second set did. This was done in order
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Figure 5.3: Visualisation of principal component analysis for one of the four
combinations of feature set (without IDyOM features) and frame size (200 ms).
On the left, a scree plot shows the 12 retained principal components, along
with the proportion of variance explained they account for, both individually
and cumulatively. On the right, a heat map displays feature loadings on each
principal component.

to specifically evaluate the effect of accounting for expectation on the predictive

performance of the models. For clarity, we hereafter refer to these differences

in model training as differences in frame size (200 ms or 500 ms), feature set

(without or with IDyOM features), and model type (described below).

We expected a high degree of collinearity in the features, with features in

some cases being exactly identical, with the exception of the type of segmentation

they were subjected to. As discussed in Chapter 4, PCA is a convenient way to

address collinearity, by retaining principal components above a set eigenvalue

threshold. We therefore conducted four PCAs with centring and scaling—one

for each combination of frame size (200 ms or 500 ms) and feature set (with or

without IDyOM).

The results of the PCAs are discussed here for simplicity, as they are not

crucial to the rest of the findings discussed in the present chapter. We retained

12 principal components with eigenvalues above one for each PCA using the

first feature set (without IDyOM) regardless of frame size, and 15 principal

components for each PCA using the second feature set (with IDyOM) regardless

of frame size as well. Taken together, these principal components accounted for

at least 75% of cumulative proportion of variance explained for each PCA (see

Figure 5.3 for an example).

While we didn’t attempt to interpret how the features were grouped together

into specific principal components, we stored feature loadings on each principal
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component and proportion of variance explained by each principal component

for later analyses of feature importance.

5.3.3 Hidden Markov models

The first models we trained were hidden Markov models (HMMs). As opposed to

Markov chains, which model the probabilities of sequences of observable states,

HMMs model the probabilities of hidden states, which themselves drive the

probability distributions of observable events. HMMs are specified by a set of

of hidden states, the transition probabilities between these states, an initial

probability distribution for these states, a set of observations, and the observation

likelihoods associated with each state, also called emission probabilities–––the

probability that an observation was generated by a specific state (for excellent

introductions to HMMs, see Jurafsky & Martin, 2021; Rabiner, 1989).

In its most simple form, for a univariate sequence of observations, an HMM

associates each hidden state with a specific emission distribution (e.g., normal

distribution with a given mean and standard deviation) of the observed values

in that sequence. In practice, we are often faced with multivariate sequences of

observations, and instead of using multivariate Gaussian emissions, which might

be limited in how accurately they can represent observations, Gaussian mixture

model emissions (GMMs) are often used. GMM-HMMs are particularly well

suited to modelling auditory events due to their flexibility and sequential nature,

and have successfully been applied to speech recognition (see Juang & Rabiner,

1991), or, in a music context, to segmentation, genre classification, sequence

prediction, and event detection (e.g., Ajmera et al., 2003; Wang et al., 2019).

It is worth clarifying what each component of an HMM represented in

the present analysis. The observations corresponded to the multidimensional

sequence of features (or rather, of principal components), different configurations

of this multidimensional sequence were modelled by GMMs, each governed by

a different hidden state of the HMM. It was assumed that specific sequences

of hidden states gave rise to the occurrence of MECs (as opposed to having a

single hidden state represent MECs specifically).

Fundamentally, HMMs are characterised by three problems (Jurafsky &

Martin, 2021; Rabiner, 1989): the likelihood problem (determining the likelihood

of a specific sequence of observations given the HMM and observations), the

decoding problem (discovering the best hidden state sequence given the HMM

and observations—not relevant to the present study because we did not attempt

to interpret the hidden states themselves), and the learning problem (learning

the HMM parameters given the states and observations). The present automatic

MEC onset detection task consisted of two steps. In the first step, we trained
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two separate HMMs (learning problem). The first HMM was trained on excerpts

centred around the onsets of MECs, and the second HMM on control excerpts. In

the second step, we presented these trained HMMs with new excerpts to obtain

the likelihood of each excerpt according to each HMM (likelihood problem). If

the HMM trained on excerpts causing MECs returned the highest likelihood,

the excerpt was categorised as inducing MECs, and vice versa. Implementation

details are provided below.

As with the permutation tests, this approach required extracting two sets of

excerpts, since HMMs are best trained on short sequences of equal length. The

exact same procedure was used, selecting excerpts centred around the onset of

MECs, and control excerpts sequentially through the rest of each track. However,

instead of 20-second excerpts, we tested two excerpt durations: two seconds

(with a frame size of 200 ms only), and five seconds (with a frame size of 200

ms or 500 ms), in order to speed up computations while ensuring a reasonable

amount of frames would be retained for each excerpt. Excerpt size (2 s or 5

s) therefore corresponds to the last aspect of model training we controlled, in

addition to frame size, feature set, and model type.

In the survey from which onsets of MECs were gathered, participants reported

these onsets with a time resolution of one second. We therefore decided to

augment the training data by also extracting excerpts categorised as causing

MECs for each frame within one second of the original onset of MECs. For

instance, with a frame size of 500 ms, instead of getting a single excerpt for an

onset of MECs at t = 40 s, we extracted five excerpts at t = 39, 39.5, 40, 40.5,

and 41 s. This also allowed us to reduce the severe class imbalance, with control

excerpts outnumbering excerpts causing MECs by a ratio of 100:1.

Using the pomegranate Python library (Schreiber, 2018), a pair of HMMs

(MECs and control) was trained for each combination of feature set (with or

without IDyOM), frame size (200 ms or 500 ms), and excerpt size (2 s or 5 s),

using manual grid search by iterating over the number of hidden states and

the number of Gaussian mixtures the models should be trained with. More

specifically, in order to save time on this very computationally intensive training

process, we trained each model using odd numbers of states and mixtures (ranging

from 1 to 17), before testing the even numbers of states and mixtures nearest

to the best performing model. This process is illustrated in Figure 5.4. We

used five-fold cross-validation, using for each fold 60% of the tracks as a training

set, 20% as a validation set to pick the best performing model for testing, and

20% as a testing set to return final performance metrics for the combination of

learning parameters which performed best across all five folds. As with feature

extraction, model training was run in parallel on university-provided compute

servers.
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Figure 5.4: Grid search for GMM-HMM training. In this example, HMMs were
trained on the feature set which includes IDyOM features. A pair of HMMs
(MECs and control) was trained for each combination of number of hidden states
(bottom axis), Gaussian mixtures (left axis), cross-validation fold (top axis), and
excerpt size and frame size (right axis). Model performance was evaluated using
area under the receiver operating characteristic curve (AUC). Odd numbers
of states and mixtures were first used for training. For each combination of
fold, excerpt size, and frame size, additional models were trained using the
even numbers of states and mixtures closest to the best performing models
(highlighted in red), resulting in some cases in increased performance (e.g., see
Fold 1, 5 s excerpt size, 500 ms frame size). Cell colour represents models which
failed to converge, in grey, or AUC. The best performing HMMs for each fold
are highlighted with a thicker, red border.

The process for training an individual HMM was as follows. All data was

concatenated, ignoring its sequential nature, to identify a cluster for each hidden

state using k-means, and initialise the parameters of the corresponding GMM

using said cluster. The model was then initialised with a uniform probability

transition matrix, before training began using the Baum-Welch algorithm (see

Jurafsky & Martin, 2021). Regularisation was applied, by setting a transition

and emission pseudocount of 0.1, and an edge and distribution inertia of 0.1 (see

Schreiber, 2018). If the model failed to converge, generally due to underflow errors,

training was attempted once more. If unsuccessful, training was abandoned

and a new model was trained for the next step of the grid search, as seen in

Figure 5.4.

Full tracks, split into consecutive excerpts, were used for model validation.

For each excerpt from each track in the validation test, a log probability value

was obtained for each of the pair of trained HMMs (the one trained on excerpts

causing MECs, and the one trained on control excerpts), using the forward
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algorithm (see Jurafsky & Martin, 2021). If the HMM trained on excerpts

causing MECs returned the highest log probability for the tested excerpt, that

excerpt was predicted as an occurrence of MEC, and vice versa. For each fold,

this validation process resulted in a univariate time-series of binary predictions

for each track.

Due to the sequential nature of the resulting predictions, two sets of perfor-

mance metrics were computed, using the sed eval Python library (Mesaros et al.,

2016): event-based metrics, and segment-based metrics. Event-based metrics

compare ground truth and predictions frame by frame, usually allowing for a

collar—a small amount of tolerance around the onset of a predicted occurrence

of MECs. We opted for a one-second collar, which resulted, for instance, in

predicted occurrences of MECs being categorised as true positives if they were

within one second of an onset of MECs in the ground truth. Segment-based

metrics compare ground truth and predictions in a fixed time grid, marking seg-

ments are active if they include an onset of MECs, and inactive if not. We opted

for a five-second segment length, resulting in a given segment being categorised

as a true positive if it included an onset of MECs in both the ground truth and

the predictions.

For both types of metrics, we computed precision, recall, and F-measure—the

harmonic mean of precision and recall. In addition, for segment-based metrics, we

computed balanced accuracy, which is not available for event-based metrics (see

Mesaros et al., 2016), as well as true positive rate and false positive rate, in order

to compute the area under the receiver operating characteristic curve (AUC). In

a typical classification task, the AUC is calculated by modifying the classification

threshold. In the present analysis, however, predictions were not made based

on a classification threshold, but rather by comparing log probabilities between

two HMMs. To emulate the principle of a classification threshold, we collected

all frame-wise log probability differences and extracted their percentiles. Each

percentile was used as a proxy for a threshold, by generating a new set of

predictions based on whether or not the difference between the log probabilities

of both HMMs was higher or lower than that percentile. This allowed us to

collect 100 pairs of true positive rates and false positive rates (one for each

percentile), which were then used to compute the AUC with the scikit-learn

Python library (Pedregosa et al., 2011).

After observing the results, discussed later in the present chapter, we also

decided to compute Fβ , which applies an additional weight β to the F-measure in

order to disproportionately favour precision or recall over the other. We picked

a value of 2 for β—a standard value to signify that we considered recall twice as

important as precision in the present analysis. This decision and its implications

are explored in the discussion. For the validation sets, only AUC was used to
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select the combination of learning parameters which performed best across all

five folds. For each fold, the HMMs trained using these learning parameters

were then used on the testing set to compute the AUC. All other performance

metrics were computed for the classification threshold (i.e., the log probability

difference threshold) which returned the highest Fβ value. These metrics were

then averaged across all five folds to return final model performance metrics.

5.3.4 Support-vector machines

For purposes of comparison, we ran all analyses using a second type of model

called support-vector machine (SVM). For classification tasks using an SVM,

model training consists of finding the hyperplane which maximises the distance

between the two classes, and is used as a decision boundary to make predictions.

SVMs are widely used for classification tasks, and were chosen in the present

analysis as a more naive modelling approach because, when compared to HMMs,

they are much quicker to train, less prone to fitting errors, relatively easy

to interpret, and have the added benefit of being more forgiving in terms

of statistical assumptions than logistic regression—another commonly used

classification method. However, as opposed to HMMs, they do not take into

account the sequential nature of the data.

SVMs were trained using scikit-learn with a linear kernel, no random feature

selection, a stopping criteria set at 10−5, and by adjusting weights inversely

proportional to class frequencies in order to account for class imbalance. The

HMM workflow detailed above was replicated to train, validate, and test SVMs,

with a few exceptions. First, separating the training data into excerpts was not

necessary, since SVMs could be trained on the whole dataset at once. This also

meant that instead of generating several excerpts to account for the imprecision

in the time resolution of onsets of MECs, we simply assigned positive labels to

all frames within one second of the onset of MECs. Second, grid search was

performed, but only involved varying feature set (with or without IDyOM), frame

size (200 ms or 500 ms), and the regularisation parameter for linear SVMs (using

a logarithmic scale ranging from 10−24 to 104, with even-numbered exponents

only). Third, predictions were made frame-wise, but we still used event-based

and segment-based evaluation metrics. Finally, as discussed earlier, computing

the AUC requires modifying the classification threshold, but linear SVMs do

not return the probabilities associated with the predictions for each frame by

default. To obtain these probabilities, we applied Platt scaling (Platt, 1999) on

the decision function, and then computed the AUC similarly as for the HMMs, by

adjusting the classification threshold over the percentiles of these probabilities.
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5.3.5 Feature importance

The final step of the analysis was to extract feature importance. To simplify

the interpretation of the results, feature importance was only extracted from

the best performing model across all combinations of excerpt size, frame size,

feature set, and model type. Since the best performing model ended up being

an SVM, as revealed in the results, the method described below is specific to

feature importance extraction from the parameters of a trained SVM.

Using Platt scaling involves a second layer of cross-validation within each

cross-validation fold. We refer to the folds from this second layer as SVM

folds to differentiate them from the cross-validation folds used in the workflow

detailed above. First, feature coefficients were extracted from the parameters of

the trained models. Since we were interested in assessing feature importance,

as opposed to trying to interpret the directionality of the coefficients (which

was more relevant to the permutation test analyses), absolute values were

taken, therefore preventing coefficients from cancelling each other out when

averaged over SVM folds, if directionally different. These absolute values for

the coefficients of each feature were averaged over each SVM fold, resulting in a

set of five positive, averaged coefficients for each feature, i.e., one coefficient per

cross-validation fold.

However, in this case, the features were principal components obtained with

PCA. To tie the coefficients back to the original features, we had to apply weights

to these coefficients based on proportion of variance explained by and feature

loadings on each principal component, thereby assigning a share of the influence

of each principal component on the models to its constituent features, based on

how much variance in the data that principal component accounted for. To do so,

we simply took the feature loadings on each principal component, multiplied them

by the proportion of the variance explained by each principal component, and

multiplied that by the coefficients extracted from the models for that principal

component. We then added up the coefficients for each feature across all principal

components, resulting, again, in a single coefficient per feature for each of the

cross-validation folds (but this time, for each of the original features, as opposed

to principal components).

The magnitude of the coefficients differed between cross-validation folds, but

since the folds were of equal size, and we were interested in feature importance,

we rescaled the coefficients linearly for each fold, such that 0 corresponded to the

least contributing feature for that fold, and 1 to the most contributing feature.

Finally, we averaged these values across the five cross-validation folds, resulting

in a single feature importance value, between 0 and 1, for each of the original

features that were used for PCA before model training. Note that these values
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Figure 5.5: Visualisation of the permutation tests. Vertical blue lines denote
frames for which there were significant differences between the excerpts causing
MECs (thick blue line) and control excerpts (thin grey line).

do not exactly correspond to a rank, but rather, to a continuous spectrum of

feature importance, where a value of 0 would represent the feature with the

lowest feature importance on all five cross-validation folds, and a value of 1 for

the highest feature importance.

5.4 Results

Far too many permutation tests were conducted to meaningfully present the

results in a table. Instead, we opted to visualise all the results in Figure 5.5.

This figure warrants extensive explanation, and is therefore discussed here rather

than in the figure caption. Note that all feature values were Z-scored in the

figure, in order to better visualise the magnitude of the effects, and to enable

better comparisons across features.

Each plot within the grid corresponds to one of the features that was included

in the PCA (keeping in mind that we only ran permutation tests on the dataset

with a 500 ms frame size). The plots are arranged by rows, corresponding to

feature categories, and by columns, corresponding to summary statistics. The
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x-axes represent 20-second excerpts, centred around the onsets of MECs, and the

y-axes represent Z-scores. Within each plot, the horizontal line at y = 0 therefore

represents a Z-score of 0, and the vertical dotted line at x = 0 represents the

onsets of MECs.

The thin grey time-series represent values averaged over all the control

excerpts, while the thicker blue time-series represent values averaged over all

the excerpts centred around reported onsets on MECs. For a given frame, a

significant difference in average feature values between these two time-series, as

revealed by a permutation test, is indicated by a vertical blue line. As mentioned

earlier, permutation tests were not conducted for σ0kdist and σ1kdist due to the

way these features were computed.

Interpretation of these results is provided in the discussion, but we can

already easily identify several features showing higher values in the excerpts

causing MECs, or sharp increases around the onset of MECs.

The results for the predictive modelling of the onsets of MECs are presented in

Table 5.2, which shows evaluation metrics for the best performing combinations

of model type (HMM or SVM), feature set (with or without IDyOM features),

and metrics type (segment-based or frame-based). Including IDyOM features in

the feature set resulted in slightly better metrics overall, with the exception of

AUC for the HMM, which was slightly lower with IDyOM features. Both SVMs

outperformed the HMMs, with the SVM trained using all features reaching a

segment-based AUC of 0.597, Fβ of 0.167, and balanced accuracy (the arithmetic

mean of the accuracy on each class) of 0.580. All models exhibited very low

precision and good recall, therefore leading to low F-measures and motivating

the choice of Fβ as an evaluation metric, as expanded upon in the discussion.

Interestingly, the best performing models for each category, as described in

Table 5.2, all used the features with a 500 ms frame size, as opposed to 200 ms.

Table 5.2: Evaluation metrics and learning parameters for each model

Model IDyOM Metric type Evaluation metrics

AUC Fβ F P R BA

HMM 7 Segment 0.579 0.161 0.075 0.040 0.682 0.564
Frame - 0.091 0.042 0.022 0.442 -

3 Segment 0.577 0.165 0.076 0.040 0.744 0.571
Frame - 0.099 0.046 0.024 0.429 -

SVM 7 Segment 0.592 0.166 0.078 0.041 0.713 0.579
Frame - 0.080 0.036 0.019 0.466 -

3 Segment 0.597 0.167 0.078 0.041 0.693 0.580
Frame - 0.088 0.041 0.022 0.383 -

Note. Highest values in bold. HMM = Hidden Markov model, SVM = Support-vector
machine, AUC = Area under the receiver operating characteristic curve, Fβ = Fβ-
measure, F = F-measure, P = Precision, R = Recall, BA = Balanced accuracy.
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Figure 5.6: Receiver operating curves for each cross-validation fold of the SVM
trained using all available features. Overall AUC for the model was computed by
averaging the AUCs for each curve. The threshold which returned the highest
Fβ value is visualised by a circle on each curve, and corresponds to the threshold
at which all evaluation metrics were retained before being averaged to return
overall evaluation metrics for the model.

In order to maximise the amount of data that could be used for model

training, we opted for the cross-validation approach described above, testing the

trained model on a different section of the dataset for each cross-validation fold,

instead of training a final model to obtain evaluation metrics on a holdout set.

Therefore, as explained earlier, AUC was computed from five different receiver

operating curves instead of a single one. These curves are shown in Figure 5.6,

along with the threshold which resulted in the highest Fβ values for each curve.

Finally, the contribution of each feature to the best-performing SVM is

visualised in Figure 5.7, in terms of feature importance. Melodic entropy and

information content, as computed with IDyOM, were the best predictors of

MECs, with melodic entropy reaching a value of 1, meaning it was the most

important predictor on all five cross-validation folds. Following these two features

were the variance of the first-order difference of melodic entropy, as well as mean

spectral flatness, spread, and centroid. The least contributing features were

the mean first-order differences of brightness, roughness, and spectral entropy,

spread, and centroid.

5.5 Discussion

The permutation tests replicated many of the findings from prior research.

Three main types of patterns are identifiable in Figure 5.5: features which were

consistently higher than controls around the onset of MECs, features which

showed a sharp increase around the onset of MECs, and features which showed

no significant differences from controls. First, looking at the original features

(as assessed with µ0), MECs were characterised by elevated brightness, flatness,

spectral centroid, spectral entropy, melodic entropy, and presence of vocals, as

well as sharp increases in envelope, melodic information content, roughness,

143



Figure 5.7: Relative feature importance for the SVM trained using all available
features. Importance uses an arbitrary scale from 0 to 1, with feature importance
rescaled linearly such that the feature contributing the most on each cross-
validation fold received a score of 1, as mean melodic entropy did in this case,
and the feature contributing the least received a score of 0, which no feature did
for all five folds.

spectral flux, spectral spread, and melodic entropy, as well as in envelope and

key distance when computed with a larger sliding window. While there were

also several frames showing significant differences for the harmonic change

detection function (HCDF, and its associated feature computed with a larger

sliding window), the overall differences were less convincing than with other

features. Interestingly, melodic information content increased around the onset

of MECs and decreased afterwards, suggesting the possibility that MECs were

associated with a single unexpected event, immediately followed by a return to

more expected events. In their study, Cheung et al. (2019) found evidence that

information content and entropy interacted in eliciting pleasure, with surprising

144



chords eliciting high pleasure in certain contexts and low pleasure in uncertain

contexts. While their experimental paradigm allowed for much more temporal

precision than the one presented in this chapter, the very brief decrease in

melodic entropy combined with the increase in melodic information content seen

in Figure 5.5 around the onset of MECs could support the presence of such an

interaction.

The variance in these features (as assessed with σ0) largely followed similar

patterns, with the exception of the presence of vocals, which only contained a

single frame with a significant difference between MECs and controls, located at

the exact onsets of MECs. We would note that the presence of vocals was the

only binary feature in this analysis, and was relatively slow-moving compared to

the other features, due to how it was pre-processed. Regardless, this could be

interpreted as vocals being more likely around the onsets of MECs (as seen with

µ0), and MECs being slightly but not overly affected by increased variance in

the presence of vocals around their onsets. Significant effects were much more

sparse when looking at the rate of change of each feature (as assessed with µ1),

with a convincing peak only occurring for the version of envelope computed with

a larger sliding window, providing further evidence that sudden, large changes

in loudness are associated with MECs. Variance in these rates of change (as

assessed with σ1) almost exactly followed the variance in the original features

(as assessed with σ0), which follows the intuition that when variance in a feature

is significantly above average, this is also reflected in the variance of its rate of

change.

It is worth pointing out that the patterns seen in each feature were of

reasonable magnitude, with most differences ranging from 0.1 to 0.3 in Z-

scores. It is also worth noting that these were all hypothesised based on previous

research rather than exploratory findings. In addition, we applied extremely strict

Bonferroni correction, reducing the alpha threshold for statistical significance to

slightly higher than 0.001, and therefore providing a high degree of confidence

in the identified effects. Tying these results back to findings from prior research

(as listed in detail in the introduction and in Chapter 2), the permutation test

analysis provided a large-scale replication of effects showing MECs as being

associated with all the acoustic and musical elicitors that were approximated

with extracted features, including increases in loudness (e.g., Sloboda, 1991),

crescendi (e.g., Panksepp, 1995), increased roughness (e.g., Grewe et al., 2007),

brightness (e.g., Bannister & Eerola, 2018), event density (e.g., Nagel et al., 2008),

and spectral centroid and flux (e.g., Bannister & Eerola, 2018), expansion of the

frequency range (e.g., Guhn et al., 2007), and changes in texture, harmony and

tonality (e.g., Sloboda, 1991). Finally, we provided novel quantitative evidence

for the existence of effects of vocals and of melodic expectation on the occurrence
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of MECs, which suggests that MECs are more likely in the presence of vocals,

and around the onsets of unpredictable notes in uncertain melodic contexts.

Several models were trained to perform automatic MEC onset detection.

This resulted in three sets of findings which warrant further discussion. First,

we expected HMMs to perform better than SVMs but the opposite was true. As

discussed earlier, HMMs are particularly well suited to auditory event detection

tasks. However, in prior research, such events were most often well-defined, with

precise, objective onsets. Detecting MECs comes with an additional layer of

abstraction, with MECs not being detectable directly from the signal, but rather,

being psychophysiological reactions to some properties of the signal. In addition,

onsets of MECs were gathered from subjective survey answers and therefore did

not represent an exhaustive and precise source of ground truth. It is encouraging,

however, that prediction performance was relatively comparable between HMMs

and SVMs given these limitations, showing that models such as HMMs can be

used to detect the onsets of MECs. It could be that HMM performance could be

improved by using longer frame sizes and window sizes, for instance, or by better

defining an interpretation of the hidden states for each feature. It remains our

intuition that sequential models are best suited to the detection of MECs, but

successfully applying such methods might rely on obtaining more exhaustive,

better-quality data.

Second, while recall was high, precision was very low for all models. Precision,

here, refers to the proportion of predicted MECs which were actually MECs,

while recall refers to the proportion of MECs in the ground truth which were

predicted as MECs. In other words, the models we trained identified a large

proportion of the MECs in the ground truth (high recall) but also predicted far

too many MECs where none were recorded in the ground truth (low precision).

It is worth mentioning, however, that due to the very high class imbalance in

the data, baseline precision was extremely low (PB = 0.011), but all the models

still performed better than chance as shown by all AUC values exceeding 0.5.

It is because of this low precision that we opted to report results based on the

highest Fβ value returned by each model, since not doing so disproportionately

penalised recall by optimising for very small increases in precision. Optimising

for recall also made sense, conceptually, due to the nature of the ground truth

data. Indeed, since the ground truth data was acquired experimentally, it is

highly likely that, with many more participants in the survey, additional onsets

of MECs would have been reported for some of the tracks used for model training,

which would have occurred during passages categorised as controls in the present

analysis. This made the ground truth incomplete, which motivated attempting

to predict all the MECs reported in the data by maximising recall, rather than

only the MECs present in the data by maximising precision, with the added

146



advantage that an Fβ-optimised model should provide more useful information

about which features best characterised the onsets of MECs when looking at

feature importance. While these results are not reported in the present chapter

for brevity and clarity, it is also worth mentioning that reporting metrics based

on the highest Fβ value as opposed to the highest F-measure came at almost no

cost to precision.

Finally, we found that the models which included IDyOM features in the

training set outperformed the models which didn’t. While these performance

improvements were small, it is worth keeping in mind that, as opposed to the

other features which benefited from robust data extraction methods, melodic

entropy and information content were both computed based on automatically

extracted melodic pitch frequencies—a notoriously difficult and imprecise process

subject to much ongoing research—which were then converted to sequences of

notes based on a simple heuristic. Despite these limitations, these findings

correspond to quantifiable effects of expectation on the occurrence of MECs,

which are further reinforced by the findings on feature importance discussed

below.

Melodic entropy and information content were indeed the best predictors

of MEC onsets by far, followed by the variance in their rates of change as well

as the mean of some spectral features (flatness, spread, and centroid). While

feature importance is not that informative on its own, it provides interesting

insights when combined with the results from the permutation tests, by allowing

comparisons between the magnitude of the difference between MECs and controls

in each feature, and the degree to which these differences were predictive of MECs.

For instance, the lack of detected effects of first-order differences on MECs is also

apparent in the fact that most of these features were not strong predictors of

MECs. However, these comparisons can be more ambiguous. Many features, such

as sharp increases in loudness, benefit from extensive prior empirical support,

and strongly displayed the expected behaviour in the permutation tests, but

they were not highly ranked in terms of predictive performance. Conversely,

the magnitude of the effects detected in the permutation tests for melodic

entropy and information content was much lower than for other features, and

yet, these expectation-related features were the best predictors of MECs. This

suggests that, while previous findings about correlations between various features

and MECs were replicated, these features were not always strong predictors

of MECs. Taking loudness as an example, it could be that MECs are indeed

characterised by sharp increases in loudness, but sharp increases of loudness

occur at other moments as well, which makes them inaccurate predictors of

MECs. In other words, loudness might be a necessary but non-specific elicitor of

MECs. Conversely, small differences in expectation between MECs and controls
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could be due to small effect sizes, or to increases in entropy and information

content only being present in a subset of MEC onsets, but appear to be highly

specific to MECs, therefore driving their predictive performance.

Interestingly, Bannister (2020c) found that manipulating loudness and bright-

ness around known onsets of MECs resulted in changes in how many people

experienced MECs. Given the results of the feature importance analysis dis-

cussed above, a possible interpretation for these causal findings could be that

a certain combination of factors is necessary for the occurrence of MECs, as

seen by the finding by Bannister that some people reported MECs regardless

of loudness and brightness manipulations, but that these manipulations acted

upon a loudness and brightness threshold at which different people experience

MECs. In other words, it could be that specific levels of loudness and brightness

were required for the experience of MECs in some participants, but were not

necessarily predictive of such experiences on their own.

It is also worth mentioning a recent article by Mori (2022), which was

published after the present experiment concluded, and featured a very similar

methodology to ours. In the study described by the author, 54 participants

who often experience MECs were asked to listen to a few self-selected pop rock

songs which induce MECs or tears while indicating occurrences of MECs or

tears with buttons presses. Acoustic features were extracted using MIRtoolbox,

and included most of the acoustic features used in the present analysis, as well

as a range of rhythm-related features and mel-frequency cepstral coefficients.

Excerpts centred around the onsets of MECs, tears, and a comparable number

of randomly selected control excerpts were labelled to train a multi-class ridge

regression classifier. Instead of using AUC, predictive performance was assessed

with permutation tests, conducted by randomly resampling the predicted labels

for each frame to generate a null distribution of predictive accuracies. Feature

importance was assessed with bootstrapping—a preferable approach to the one

we used, partly because it allows using each feature directly without the need

for dimensionality reduction, but which was not practical for our purposes due

to our prohibitively computationally expensive model training process.

Mori (2022) obtained a classification accuracy of 43% around the onsets of

MECs, which was significantly better than chance, as revealed by permutation

tests. For our best performing model, AUC was 0.597 and balanced accuracy

was 58%, though it is worth pointing out that these numbers are not directly

comparable, since Mori (2022) conducted multi-class classification on a balanced

dataset, and assessed prediction accuracy with different metrics. In addition, the

author identified that these predictions were significantly driven by minor mode

immediately preceding MECs (highlighting a possible relationship with expressed

valence as seen in Chapter 4), higher event density and rhythmic entropy at the
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onset of MECs, and higher spectral flux and rhythmic entropy after the onset

of MECs (replicating some of our results as well as some hypothesised effects

of rhythmic properties detailed in Chapter 2). Various mel-frequency cepstral

coefficients also significantly predicted MECs, but these provide less room for

interpretation. The author conducted an additional study to investigate the

effect of lyrical content, as extracted using natural language processing, but

found no effect of lyrics on MECs. Overall, Mori (2022) mainly attributed the

occurrence of MECs to violations of rhythmic expectation, which is certainly

complementary to the present findings about the effects of melodic expectation

on MECs.

Our study suffered from a few limitations, the main one being that a model

with an AUC below 0.60 is generally considered to be a very poor classifier.

However, it is worth placing model performance within the context of the task

at hand. As discussed throughout the present chapter, we expected automatic

detection of MEC onsets to be far from trivial, due to the inherent impossibility

in collecting exhaustive ground truth data, and to MECs being a subjective,

psychophysiological response known to be caused by a wide range of elicitors,

some of which would be exceedingly difficult to quantify for modelling purposes.

Throughout the modelling process, we had to make a lot of necessary decision

with little existing basis for an informed choice between the available options.

Given this, we aimed to reach a balance between time constraints and informed

guesses as to which processing steps would lead to the best chances of success.

These decisions were all documented throughout the present chapter in order to

provide transparency and enable reproducibility. One decision, notably, was to

automatically extract melodic pitch frequency in order to compute expectation-

related features. It is highly likely that a replication of the current study using

transcribed melodies would lead to a more precise understanding of the effects

of expectation on MECs.

More importantly, we wanted our models to be interpretable, which meant

that we needed to use both interpretable features, and interpretable models,

at the necessary cost of predictive performance. It is highly likely that more

powerful approaches, such as neural networks or ensemble methods, using features

such as mel-frequency cepstral coefficients as model inputs, would result in better

predictive performance. These approaches might gain from some methodological

insights gathered in the present study, such as the use of features computed

over large sliding windows and segmented using a 500 ms frame size, or the

use of segment-based metrics for evaluation. Exploring the benefits of using

larger frame sizes might also lead to improved performance. However, we suspect

that there is a relatively low ceiling to predictive performance, which, if close to

an AUC of 0.60 as seen in the present study, would suggest a more important
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role of emotional elicitors than previously anticipated. Considering the extent

of previous findings about the relationships between MECs and various extra-

musical factors such as personal meaning or the state of being moved, it is possible

that only a small proportion of MECs are caused by acoustic and musical elicitors

via the psychological mechanisms of brain stem reflex and musical expectation

(see Chapter 2). In other words, instead of acoustic, musical, and emotional

elicitors equally contributing to the elicitation of MECs through brain stem reflex,

musical expectation, and emotional contagion, the low predictive performance

of the model could suggest that, in many cases, emotional elicitors are more

predictive of the occurrence of MECs. Regardless of which modelling approach is

used, future research should seek to empirically validate the models by generating

predictions of MECs on a new set of stimuli, and comparing these predictions to

reports of MECs collected from new participants.

Another limitation comes from the reliance of the present study on audio

feature extraction, notably in terms of perceptual validity. A simplified way to

discuss this limitation is by understanding the purposes such features are put to in

different disciplines. In music information retrieval, audio features are generally

needed to solve computational tasks (such as genre or emotion classification,

music similarity quantification, artist identification, etc.) in order to optimise

model performance when compared to a relatively objective ground truth. In

music psychology, audio features are generally required to understand underlying

psychological processes in order to build cognitive models which are evaluated by

comparing them to observed behaviour. These distinctions are explored in detail

by Aucouturier and Bigand (2012, 2013), and result in different priorities for

feature evaluation. In music information retrieval, features are evaluated following

a pragmatic process based on whether or not they improve task performance

and are computationally simple, whereas in music psychology, feature evaluation

is rare, and focuses on whether or not features are interpretable. Some efforts

have been made to identify features which approximate the human perception of

related psychological constructs, but these are limited by the fact that they are

not easily computable for use in other studies (e.g., Aljanaki & Soleymani, 2018;

Friberg et al., 2014). It is therefore very common in psychology experiments to

extract features using existing music information retrieval toolboxes—as a very

crude example, MIRtoolbox (Lartillot et al., 2008) has been cited in more than

600 articles including the word psychology—seeing as the need for computational

features often exceeds the need for the perceptual validity provided by subjective

ratings, as was the case in the present study. Perceptual validation of audio

features would greatly improve the interpretability of the present research, and

of research in music psychology in general, but such work would represent a

considerable undertaking. In the meantime, and despite their advantages, using
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audio features to model psychophysiological responses such as MECs should

come with the understanding that these features should not be equated with the

human perception of related constructs.

In summary, we conducted a set of computational analyses, resulting in a

large-scale replication of previous findings about acoustic and musical elicitors

of MECs, and in the construction of a model which can identify onsets of MECs

better than chance. The hypothesised role of expectation in the experience of

MECs was confirmed in a series of novel empirical findings, showing that melodic

entropy and information content were significantly different between MECs and

controls, led to increased predictive performance when included during model

training, and were the best predictors of MEC onsets. Future research should

seek to explore the many remaining gaps in knowledge about the relationship

between expectation and MECs. Notably, questions remain about the exact

interaction between uncertainty and surprise, the role of harmonic and rhythmic

expectation, the differences between schematic and veridical expectation, and the

interactions between elicitors (this chapter), stylistic preference and familiarity

(Chapter 3), and affect (Chapter 4).
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Chapter 6

Conclusion

6.1 Overview

In this thesis, we presented a body of work aiming to investigate the relationships

between MECs, musical expectation, and affective and aesthetic responses,

considering research questions about what MECs are, what causes them, and

when they occur.

In Chapter 2, we conducted a systematic review of the literature on MECs,

allowing us to define them as a fleeting, pleasurable bodily sensation, sometimes

accompanied by goosebumps, experienced when listening to specific musical

passages. In the review, we integrated theoretical and empirical findings to reveal

that MECs are associated with physiological changes and increased arousal, and

recruit brain structures and systems relevant to emotion, reward, and motivation.

We identified that they can be caused by a set of acoustic, musical, and emotional

elicitors, and are influenced by personality differences such as openness to

experience. We provided a preliminary theoretical model that allows for different

psychological pathways for the experience of MECs, if not different types of MECs,

relying on complex interactions between listener, context, elicitors, psychological

and evolutionary mechanisms, and response attributes. We provided a dataset of

pieces of music known to cause MECs, and a set of open issues, hypotheses, and

methodological recommendations, which motivated the research presented in the

following chapters. Notably, we highlighted that further evidence was needed on

the relationships between MECs and piloerection, pleasure, familiarity, stylistic

preference, and musical expectation, and that causal approaches and the use of

naturalistic listening experiences should be emphasised in future research.

In Chapter 3, we followed these recommendations by investigating the re-

lationships between MECs, piloerection, pleasure, musical content, stylistic

preference, familiarity, and liking in a controlled, longitudinal experiment using
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existing pieces of music in as naturalistic a listening context as possible. Musical

content, stylistic preference, and familiarity were systematically manipulated,

allowing us to identify robust effects of stylistic preference on MECs, piloerection,

and pleasure, and revealing that much of the variance in liking pieces of music

was accounted for by all the other factors combined. There were fundamental

differences between MECs and piloerection, with MECs being reported far more

often than piloerection was detected, familiarity having opposite effects on these

two responses, and the responses themselves being uncorrelated. However, pilo-

erection significantly overlapped with MECs and pleasure, which suggests that,

while related, piloerection might only be present for a distinct type of MECs, or

that it requires MECs to exceed an intensity threshold. Effect sizes were small

for all the identified effects, and since no effect of musical content on MECs

was detected, we hypothesised that more powerful approaches were needed to

identify such an effect.

In Chapter 4, we implemented such an approach by conducting a corpus

analysis using computational methods. We compared track-level audio features

between tracks taken from the dataset provided in Chapter 2 and several sets of

control tracks, algorithmically matched by artist, duration, and popularity, to

investigate the effect of expressed valence on MECs. We identified that tracks

known to elicit MECs were sadder than control tracks, and that they also tended

to be slower, less intense, and more instrumental. Moreover, that effect of valence

on MECs differed depending on the audio characteristics of the tracks taken

from the dataset, suggesting the possibility of there being different causes of

MECs for different types of music. Overall, this study provided further evidence

for an effect of valence on MECs, and demonstrated that computational methods

are well-suited to the study of MECs, enabling the findings that music that

causes MECs differed in musical content from other music. However, track-level

features were used, which are inadequate for an in-depth exploration of local

elicitors of MECs, which occur transiently at particular points while listening to

particular pieces of music. This motivated further, more thorough computational

work in the following chapter.

In Chapter 5, we conducted a computational analysis aimed at modelling the

onset of MECs based on auditory and musical characteristics. We extracted a

wide range of features and labels of onsets of MECs from the results of a survey

study initiated in Chapter 3, to investigate the effects of known acoustic and

musical elicitors of MECs, as well as the often hypothesised effect of musical

expectation on the occurrence of MECs. We ran a series of permutation tests

to assess the local behaviour of each feature, and trained a series of models to

evaluate how well they could predict onsets of MECs, and which features were

most important in driving these predictions. This process resulted in a systematic,
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large-scale replication of all the effects of the elicitors of MECs that were included

in the analysis. In addition, onsets of MECs could be predicted better than

chance, and melodic expectation improved model performance and was the best

predictor of MECs, with MECs being more likely in uncertain melodic contexts

including a unexpected event followed by more expected events. The differences

between feature importance and local behaviour for some features allowed us

to identify that many acoustic elicitors of MECs might be best considered as

necessary but not specifically predictive of experiences of MECs.

6.2 Recurring themes

There were four recurring themes that permeated the work presented in this

thesis. First, we highlighted theoretical and practical limitations in prior research

on MECs, with issues in terms of research design, adequacy of measures of

MECs, reproducibility, generalisability, and ecological validity. We have provided

contributions to addressing these issues, by conducting a systematic review of

the diverse and fast-growing body of research on MECs, developing a preliminary

theoretical model of MECs that provides a robust framework for future hypothesis-

driven research, and providing a set of open questions, hypotheses, suggested

approaches, and methodological recommendations for future research. We also

compiled publicly available datasets to improve reproducibility and provide

more representative data, made use of existing pieces in music in causal (and

arguably double-blinded in Chapter 3) or highly controlled hypothesis-driven

studies, explored the use of computational methods which allowed improvements

in generalisability and statistical power, and demonstrated the validity of a

stimulus-matching paradigm over several studies.

Second, we hypothesised the presence of different psychological pathways for

the experience of MECs. While the evidence we gathered is not sufficient to

confirm all the predictions arising from the preliminary model of MECs presented

in Chapter 2, since that model represents a much larger research agenda than it

was possible to cover empirically in this thesis, we did provide empirical support

for several of its components, and were not able to refute any of the predictions

made by the model. Notably, we confirmed the effects of many acoustic and

musical elicitors of MECs, as well as an effect of valence as an emotional elicitor.

We identified that the psychological mechanism of musical expectation was a

strong predictor of MECs, which potentially provided more explanatory power

than a hypothesised involvement of brain stem reflex. This result is particularly

significant, because a relationship between expectation and MECs has been

postulated continuously and very prominently in the literature since 1991, but

there has been no convincing empirical evidence for a relationship to date. Finally,
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given the effect sizes we observed in behavioural and computational studies, we

suspect that there is a ceiling to the effects of acoustic and musical elicitors on

MECs, and that emotional elicitors such as meaning or emotionality might be at

the origin of most experiences of MECs, or at least more influential, widespread,

and consistent elicitors of MECs than acoustic and musical elicitors, through

the process of being moved (for recent evidence of a strong relationship between

MECs and being moved, see Vuoskoski et al., 2022).

Third, we discussed the possibility that MECs are a collection of phenomeno-

logically and psychologically distinct experiences, as identified in prior research

which is discussed in Chapter 2. Again, while we did not explicitly investigate

this research question, and are therefore not able to provide conclusive evidence,

our findings certainly provided some degree of support for this hypothesis. In

fact, all the studies we conducted resulted in the identification of diverging

patterns in the experience of MECs, such as fundamental differences between

MECs and piloerection in Chapter 3, differences in the effect of valence on MECs

depending on stimulus-driven properties in Chapter 4, or low predictive power

of acoustic and musical elicitors of MECs in Chapter 5. The presence of distinct

types of MECs has received further support in the recent literature (Bannister,

2020a; Bannister & Eerola, 2021), and we consider this research question crucial

to future work on MECs.

Lastly, we mentioned the lack of clarity in the relationship between MECs

and emotional and aesthetic responses. In Chapter 2, we characterised MECs

as a pleasurable, though not essential component of emotional and aesthetic

experiences. In Chapter 3, our findings suggested that MECs overlapped sig-

nificantly but not exclusively with pleasure, and that MECs, in combination

with other factors such as stylistic preference and familiarity, could predict a

large amount of the variance in music preference. In Chapter 5, we identified

that musical expectation was partially predictive of onsets of MECs—a result

which can be placed in the context of prior research revealing that violations of

musical expectation can induce emotional and aesthetic responses (see Chapter

1). These results provide further justification for the recommendations we made

in Chapter 2 that MECs should not be conflated with peak pleasure, and that

while they can form a part of emotional and aesthetic responses to music, they

should not be used as the sole indicator of such responses. Interestingly, this

view is supported by recent evidence that, following administration of an opioid

antagonist, experiences of MECs were characterised by no changes in self-reports

of pleasure, but decreased pupil diameter (Laeng et al., 2021), therefore suggest-

ing that the removal of a physiological component of MECs had no effect on

experienced pleasure.
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6.3 Limitations and future work

We opted to focus on MECs in the present research. However, it is important to

keep in mind that pleasurable chills can also occur when presented with other

forms of art. While some previous research has investigated such responses (see

Chapter 2), notably in comparative evaluations of emotional elicitors of chills, it

is currently unknown whether or not the hypothesised psychological pathways

for distinct experiences of MECs would apply to other types of art-elicited chills.

Many decisions about study design were taken in order to improve ecological

validity, notably through the use of naturalistic stimuli, and to gather as much

evidence as possible, by opting for interpretable models at the expense of

predictive performance (although interpretability was also affected by the lack

of perceptual validation of most of the features extracted for the analyses in

Chapters 4 and 5). We believe both of these decisions contributed to the small

effect sizes observed throughout the present work, along with the impossibility

of producing a comprehensive ground truth and the efforts made to provide

rigorous control conditions. We suspect that complementary findings could be

obtained from studies recruiting more powerful modelling approaches.

In terms of generalisability, while the datasets used in our research featured

music from different genres and cultures, they were still mostly comprised

of Western music. Relatedly, the behavioural study conducted in Chapter 3

suffered from the same pitfalls as many other psychology experiments with

regards to sample representativeness. Cross-lab work involving online methods,

as implemented by Jacoby et al. (2021), is expensive in terms of time and

resources, but provides an unparalleled opportunity to bring about generalisable

cross-cultural findings, from which research on MECs could certainly benefit.

Finally, while establishing causality was a strong motivation for the present

work, we generally focused our modelling efforts on maximising interpretability

in order to generate novel findings about elicitors of MECs and demonstrate

the suitability of computational approaches in the study of MECs. Empirical

verification of the predictions made by these models is a necessary next step

in order to gain confidence in such findings, and could be complemented by

experiments seeking to manipulate stimuli in order to provide causal evidence for

the effects of the identified psychological mechanisms underlying the experience

of MECs.

Overall, while MECs are inherently subjective, hard to define and measure,

and subject to complex interactions between listener, context, and music, they

represent a fascinating opportunity to better understand why and how people

appreciate music.
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