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Abstract

To formalize the human judgment of rhythm complexity, we used five measures from informa-

tion theory and algorithmic complexity to measure the complexity of 48 artificially generated

rhythmic sequences. We compared these measurements to human prediction accuracy and easiness

judgments obtained from a listening experiment, in which 32 participants guessed the last beat of

each sequence. We also investigated the modulating effects of musical expertise and general pat-

tern identification ability. Entropy rate and Kolmogorov complexity were correlated with predic-

tion accuracy, and highly correlated with easiness judgments. A logistic regression showed main

effects of musical training, entropy rate, and Kolmogorov complexity, and an interaction between

musical training and both entropy rate and Kolmogorov complexity. These results indicate that

information-theoretic concepts capture some salient features of the human judgment of rhythm

complexity, and they confirm the influence of musical expertise on complexity judgments.

Keywords: Rhythm perception; Rhythm complexity; Information theory measures; Entropy rate;

Kolmogorov complexity; Musical expertise

1. Introduction

The notion of complexity in art has been of interest to research in psychology for more

than a century. Following Wundt’s idea that the enjoyment of a stimulus depends on its

complexity (Wundt, 1896), a series of studies investigated the relationship between com-

plexity and esthetic perception. In this endeavor, various ways of assessing complexity

have been used. For instance, in his famous study leading to the finding of an inverted-U

relationship between hedonic value and arousal potential, the visual stimuli used by
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Berlyne (1970) were arbitrarily assigned to a category of complexity based on their back-

ground and on the number of human figures being featured. In the musical domain, stim-

ulus complexity has been manipulated by varying the loudness, pitch, and duration of

tones in tone sequences (Vitz, 1966) or by increasing the variety of chords and the

amount of syncopations (Heyduk, 1975). Furthermore, complexity has sometimes been

quantified by asking the participants to provide subjective ratings of complexity (Heyduk,

1975; North & Hargreaves, 1995). All these studies reported an inverted-U relationship

between liking and complexity, and they highlighted the modulatory effects of repeated

exposure and familiarity, musical training, and individual preference for a specific level

of complexity.

The research presented in this study focuses on formalizing the human judgment of

rhythm complexity, by using an information-theoretic or algorithmic measure of complex-

ity as opposed to the subjective or arbitrary measures presented so far. There are several

possible measures of complexity to consider. Some of them are derived directly from

music theory, such as measures of rhythmic syncopation (Fitch & Rosenfeld, 2007;

Gomez, Thul, & Toussaint, 2007), or from human performance, such as measures of

rhythm reproduction ability (Essens, 1995; Povel & Essens, 1985). Other measures benefit

from a solid information-theoretic grounding and have been shown to capture various fea-

tures of the cognitive processing of music. For instance, Shannon entropy (Shannon,

1948) was found to be a good predictor of the amount of attention directed to a single

voice in a piece of music containing multiple voices (Madsen & Widmer, 2006). Hansen

and Pearce (2012) reported that Shannon entropy predicts the uncertainty of probe tones

in melodies. Moreover, they identified an entropy-by-expertise interaction in the ratings

of uncertainty, showing a difference in how musicians and non-musicians process com-

plex music. Another candidate, the predictive information rate, is a measure of how much

an event within a sequence reduces the uncertainty about the following events, while tak-

ing into account the information content of all the previous events (Abdallah & Plumbley,

2009, 2010, 2012; Bialek, Nemenman, & Tishby, 2001). Madsen and Widmer (2006) also

mentioned the possible suitability of measures based on compression algorithms, such as

LZ78 (Ziv & Lempel, 1978) or LZW (Welch, 1984). Indeed, LZ compressibility has been

empirically tested for its ability to predict human judgments of rhythm complexity by

Shmulevich and Povel (2000). The measure did not perform well, but the authors attribu-

ted this to the short length of the sequences used in their experiment, and suggested that

LZ compressibility is likely to perform better with longer sequences. Moreover, LZ78 is

able to provide an approximation of Kolmogorov complexity (Kolmogorov, 1965; Li &

Sleep, 2004), a measure of randomness that has been successfully used to cluster melo-

dies or music in the MIDI format in similar groups, based on their compressibility (Cili-

brasi, Vitanyi, & de Wolf, 2004; Li & Sleep, 2004, 2005).

Schmidhuber’s (2009) theoretical model explored the relationship between data com-

pression and esthetics. He compared the human mind to a self-improving, computation-

ally limited observer, and approached the question of complexity from an algorithmic

point of view: He stated that beauty comes from the challenge of discovering patterns

and the ability to compress new data; that is, a moderately complex stimulus is perceived
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as beautiful because the strategies developed to understand that stimulus facilitate the

subsequent understanding of similar stimuli. According to him, the limitations of the

mind are a determining aspect of what an observer considers as enjoyable or not. It is

therefore possible to consider that individual differences in pattern identification abilities

might modulate the perception and enjoyment of complex stimuli. He also argued that

the perceived complexity of a stimulus changes with exposure, in accordance with Ber-

lyne’s (1970) and Heyduk’s (1975) findings. Moreover, the influence of complexity is not

limited to the domain of art and esthetics. For instance, another study showed that chil-

dren’s attention shifted away from both visual and auditory stimuli that were either too

simple or too complex, and focused on stimuli of intermediate complexity that were inter-

esting but still understood, which suggests an effect of complexity on attention and learn-

ing (Kidd, Piantadosi, & Aslin, 2012, 2014).

For this study, we select five measures with a potential to formalize the human judg-

ment of rhythm complexity: Shannon entropy (H), entropy rate (h), excess entropy (E),
transient information (T), and Kolmogorov complexity (K). These measures have firm

theoretical foundations and are defined at a high level of abstraction and generality; that

is, they may be used to characterize the complexity of structures in any domain, by quan-

tifying the complexity of a sequence of symbols, irrespective of what the symbols stand

for.

The information-theoretic measures (H, h, E, and T) require a stationary probability

distribution and, since they are based on probability, require an infinite symbol sequence.

It could be argued that a non-stationary distribution (i.e., in which the symbol probability

changes over “time,” that is, as the sequence is read from left to right) might provide a

better model of rhythm perception. However our aim here is not to provide a model per

se but to investigate if abstract measures of complexity align with the perception of

rhythm complexity. If they fail to quantify perceived complexity, then one explanation

might be that subjects do indeed change their model of a rhythm sequence as the

sequence progresses. Kolmogorov complexity, K, however, makes no assumption on sta-

tionarity and non-finiteness, and any discrepancy between K and any of H, h, E, and T
might indicate that this assumption is too simplistic.

The most fundamental measure is the Kolmogorov complexity, usually denoted K (Li

& Vitanyi, 2008). It is defined as the length of the shortest computer program that can

generate a given symbol string. It is convenient, but not necessary, to use a binary

alphabet in which symbol strings are sequences of 0’s and 1’s. K measures the complex-

ity of a single object. A long and very predictable sequence (e.g., 1, 1, 1,. . .,1) could be

produced by a very short program and therefore has a small K-complexity. Such a

sequence is highly compressible. On the other hand, a random sequence has a large K-
complexity because it can only be produced by a long program. A random sequence has

no structural property that enables compression. K-complexity therefore measures ran-

domness. K-complexity has the disadvantage of being incomputable, although upper

bounds can be estimated by the degree of compressibility with respect to a particular

compressor.
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Shannon entropy, H, measures the information content of a typical symbol string from

a particular source. It is given by the formula

H ¼ �
X

pi log pi ð1Þ

where pi is the probability of the i’th symbol (Cover & Thomas, 2006). Although entropy

is a function of a probability distribution and not of a single object, it can be computed

for a single long message under the assumption that the distribution of symbols in the

message matches the underlying probability distribution. Once more it ranges from small

values for a very predictable sequence to high values for incompressible sequences.

The entropy rate, h, is the limit of the Shannon entropy per symbol of substrings of

increasing length L. It captures the inherent randomness of a sequence when all correla-

tions over longer and longer subsequences have been taken into account. It is zero for

any repetitive (periodic) sequence and of value one for a sequence of 0’s and 1’s gener-

ated by the toss of a fair coin. Denoting the entropy of substrings of length L by H(L),
then

h ¼ L!lim 1
HðLÞ
L

ð2Þ

The excess entropy, denoted E, has been described by numerous researchers and has

been given various names (effective measure complexity, stored information, predictive

information, Renyi entropy of order 1), although the mathematical definition is identical.

It is defined as

E ¼ L!lim 1 HðLÞ � hL ð3Þ

If H(L) acquires the asymptotic form H(L) ⟶ H∞ = hL + E, then E = H∞(0). Excess

entropy has the advantage that it can distinguish repetitive patterns of different period. It

has various interpretations. It may be related to the intrinsic memory of the source of the

sequence or to the mutual information between two semi-infinite halves of the sequence.

It is zero for a random sequence, and it is proportional to the logarithm of the period of a

repetitive sequence.

The final measure that we consider in this study, the transient information, T, has been
proposed as a means of distinguishing between sequences of the same period (and hence

of identical h and E) and entropy. It measures the difficulty in synchronizing to a periodic

process and captures a structural property that E fails to pick up (Crutchfield & Feldman,

2003). In terms of the asymptotic length-L entropy, it is calculated as

T ¼
X1

L¼0

H1ðLÞ � HðLÞ ð4Þ
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In this study, we use these five measures in an experiment aimed at predicting the dif-

ficulty of correctly guessing the end of rhythmic patterns of various complexity, and we

investigate two suspected modulatory effects of rhythm perception: musical expertise

(Hansen & Pearce, 2012; North & Hargreaves, 1995; Vitz, 1966) and pattern identifica-

tion ability (Schmidhuber, 2009). It is worth noting that most listeners associate rhythm

with a regular pulse, but more broadly, rhythm can be defined as the general enfolding of

binary events in time. In the sequences we present to our participants, a notional pulse is

displayed visually but aurally; most sequences do not have a strong underlying pulse.

Nevertheless, the task requires participants to make judgments about durational patterns,

that is, rhythm (Parncutt, 1994).

2. Method

2.1. Participants

Thirty-two participants (15 women and 17 men), ranging in age from 21 to 57 years

(M = 26.9 years, SD = 6.9 years), were recruited through various social networks and

among graduate students at Goldsmiths, University of London. Most of the participants

had received some musical training at some point in their lives (M = 4.67 years of musi-

cal training, SD = 3.46 years).

2.2. Materials

We selected 16 different generative algorithms with a diverse range of complexity val-

ues on the five selected complexity measures (see Supplementary Material for details of

the generative algorithms). Some algorithms produced easily identifiable patterns, but we

deliberately covered a wide range of complexity values in order for most of the stimuli

to be hard to fully apprehend. We generated a sequence of 104 symbols (1’s and 0’s)

from each algorithm, and we randomly extracted three subsequences of 50 symbols from

each sequence, with the following restriction: The subsequences extracted from the same

generative algorithm could not all end with the same symbol. The last symbol was

removed from each of the 48 resulting subsequences and kept in a separate file to be used

as the answer key for the prediction task (see Supplementary Material for the full set of

subsequences and the answer key). SuperCollider (Wilson, Cottle, & Collins, 2011) was

then used to replace the 1’s by drum hits1 and the 0’s by rests, all representing quarter

notes at 150 bpm. Each subsequence was therefore almost 20 s long. Extracting three

subsequences for each generative algorithm was a compromise, aimed at balancing the

requirements of our analysis with the overall length of the experiment. We generated two

additional training sequences, of 20 symbols each, to accustom the participants to the

experimental procedure.

Due to the nature of the task, which required accurate following of the beat subse-

quences, we also provided the participants with a visual representation of the

804 R. de Fleurian et al. / Cognitive Science 41 (2017)



subsequences. We designed a beat visualization tool using PowerPoint and iMovie

(Fig. 1), which consisted of a spiral made of 50 white dots. When a subsequence was

played, a black dot gradually filled the spiral, synchronized with the beat, until it reached

the center, at which point a question mark appeared to make sure the participants knew

exactly which beat they needed to provide a judgment for.

We used the self-report questionnaire of the Goldsmiths Musical Sophistication Index,

or Gold-MSI (M€ullensiefen, Gingras, Musil, & Stewart, 2014), to investigate the effects

of musical expertise. The questionnaire allows the calculation of a general score of musi-

cal sophistication as well as individual scores for five subscales. For this study, we only

used the subscales “Perceptual Abilities” and “Musical Training,” as well as the General

Musical Sophistication, because they are most closely related to the individual differences

effects that previous studies have found (Hansen & Pearce, 2012; North & Hargreaves,

1995; Vitz, 1966).

Finally, we selected a shortened version of the Raven’s Progressive Matrices (RPM),

the Advanced Progressive Matrices: Set I (APM1), to assess the participants’ ability to

identify and reason with visual patterns. The RPM is a widely recognized test of pattern

detection, and although it is often used as a predictor of “general intelligence,” its initial

purpose was to measure eductive ability, which is the “meaning-making ability” that

allows one to make sense of more or less chaotic stimulus configurations (Raven, Raven,

& Court, 1998).

2.3. Procedure

Each participant was tested individually in a quiet lab environment. The participants

were first shown the two training sequences as many times as they wanted and were

given instructions on how to complete the answer sheet. They were requested, for each

subsequence, to indicate whether the last beat was supposed to be a hit or a rest

Fig. 1. Beat visualization tool at different stages of a subsequence. The first spiral shows a subsequence

being played: The black dot moves along the spiral, synchronized with the beat. The second spiral shows the

end of a subsequence: Was the last beat supposed to be a hit or a rest?
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(prediction task), and they were subsequently asked to provide a rating on a seven-point

scale reflecting the easiness of indicating whether the last beat was supposed to be a hit

or a rest (judgment task).

Once the answer sheet was completed for the training sequences and once the experi-

mental procedure was fully understood, the participants were told that they should try to

guess whether the last beat was a hit or a rest if they were not sure about their answer.

Participants were also told that each subsequence would only be played once. They were

then shown the 48 subsequences in a randomized order, with a 5 s pause between each

subsequence to leave enough time to complete the answer sheet.

The participants were then given instructions to complete the APM1, with a 10 min

time limit, and the self-report questionnaire of the Gold-MSI, with no time limit.

2.4. Results

We excluded one participant from the data analysis because that participant gave

strictly alternating responses of “hit” and “rest” for the last 43 subsequences of the pre-

diction task, which we did not consider as a valid effort to guess the last beat of each

subsequence.

We conducted Bonferroni-corrected significance tests of the Spearman’s correlation

coefficients between the complexity values computed with each of the five selected mea-

sures for each algorithm. The results are shown in Table 1.

We then averaged the participants’ scores across each subsequence for the prediction

task (M = 60.3% correct, SD = 17.8%) as well as the judgment task (M = 3.73 easiness

rating on a 1–7 scale, SD = 0.83). A significance test of the Pearson’s correlation coeffi-

cient showed that prediction accuracy and easiness judgments were moderately but signif-

icantly correlated across participants (r(46) = .407, p = .004), demonstrating that the

subsequences that were perceived as easier to solve were indeed solved more success-

fully.

Bonferroni-corrected one-tailed significance tests of the Spearman’s correlation coef-

ficients were then conducted between the information-theoretic complexity values of

the subsequences and their associated prediction accuracy and easiness judgments, to

test the following hypothesis: Subsequence complexity, as measured by the five

Table 1

Correlations between complexity values of generative algorithms

Complexity Measure Shannon Entropy Entropy Rate Excess Entropy

Transient

Information

Kolmogorov

Complexity

Shannon entropy 1 0.002 0.410 0.260 0.058

Entropy rate 0.002 1 �0.515 �0.400 0.947*

Excess entropy 0.410 �0.515 1 0.926* �0.326

Transient information 0.260 �0.400 0.926* 1 �0.177

Kolmogorov complexity 0.058 0.947* �0.326 �0.177 1

Note. *p < .001.
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complexity measures, correlates negatively with participants’ prediction accuracy as

well as easiness judgments. The correlation results are shown in Table 2. Both

entropy rate and Kolmogorov complexity were significantly negatively correlated with

prediction accuracy and easiness judgments. For both complexity measures, the

magnitude of the correlation was greater for the easiness judgments than for the

prediction accuracy.

We also aggregated responses at participant level to obtain an overall performance

score on the prediction task (M = 60.3% correct, SD = 8.2%). We ran Bonferroni-cor-

rected correlation tests between the participants’ performance scores on the prediction

task and their scores on the APM1 and three dimensions from the Gold-MSI self-report

inventory (Perceptual Abilities, Musical Training and General Sophistication). We found

correlations of moderate size between performance scores and the three dimensions of

the Gold-MSI, that is, Perceptual Abilities (r(29) = .439, p = .014), Musical Training

(r(29) = .386, p = .032), and General Sophistication (r(29) = .314, p = .085), as revealed

by significance tests of the Pearson’s correlation coefficients. However, possibly due to

the small sample size, none of the correlations were significant at the Bonferroni-

corrected significance level of p = .0125. The correlation between the performance scores

and the APM1 was almost zero (r(29) = .082, p = .662), as revealed by a significance

test of the Spearman’s correlation coefficient, although it is worth mentioning that a large

proportion of the participants obtained the maximal score on the APM1, which could

have led to a lack of correlation due to a ceiling effect.

To assess any potential interactions between sequence complexity (as assessed by

entropy rate and Kolmogorov complexity, the complexity measures that correlated the

most strongly with prediction accuracy) and musical training, we computed binomial

mixed effect models with musical training and sequence complexity as fixed effects, par-

ticipant and generative algorithm as random effects, and subsequence as a nested random

effect. The results are presented in Table 3 for entropy rate and in Table 4 for Kol-

mogorov complexity. As expected, there were significant main effects of both complexity

measures. Moreover, there were significant main effects of musical training and signifi-

cant interactions between musical training and both entropy rate and Kolmogorov

complexity.

Table 2

Correlations between complexity values of subsequences and their associated prediction accuracy and

easiness judgments

Complexity Measure Prediction Accuracy Easiness Judgments

Shannon entropy 0.022 0.166

Entropy rate �0.407* �0.834**

Excess entropy 0.208 0.361

Transient information 0.086 0.158

Kolmogorov complexity �0.402* �0.866**

Note. *p < .01, **p < .001.
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3. Discussion

This study assessed the ability of five different general measures of complexity to cap-

ture the human judgment of rhythm complexity by comparing formal complexity mea-

surements to prediction accuracy and easiness judgments of human listeners on a novel

rhythm perception task. Experimental results showed that prediction accuracy and easi-

ness judgments correlated moderately, indicating that sequences that are perceived as

more complex are indeed less predictable. Out of the five assessed complexity measures,

only entropy rate and Kolmogorov complexity were significantly correlated with predic-

tion task responses, and with judgment task responses that reflect the subjectively per-

ceived complexity of rhythms. The entropy rate of a sequence can be interpreted as the

departure from periodicity. For instance, a periodic sequence that has each symbol ran-

domized with a small probability p has an entropy rate that grows with p. The results

therefore suggest that the judgment of rhythm complexity scales with departure from peri-

odicity. It is worth mentioning that entropy rate and Kolmogorov complexity per symbol

of the generative algorithms were highly correlated in our study. We observe that these

measures are fundamentally measures of the randomness of infinite length sequences;

entropy rate and the Kolmogorov complexity per symbol scale from small (ordered and

almost periodic sequences) to large (incompressible and random sequences). Entropy rate

has not been investigated in a psychological context so far, but the strong correlation of

Kolmogorov complexity with easiness judgments confirms suggestions by Shmulevich

Table 3

Mixed effects model of the influence of musical training and entropy rate on prediction accuracy, with

participant, generative algorithm, and subsequence as random effects

Estimate SE z-value p-value

(Intercept) 0.4541 0.2219 2.047 0.0407

Entropy rate �0.2842 0.0991 �2.868 0.0041

Musical training 0.1475 0.0614 2.404 0.0162

Entropy rate x Musical training �0.1432 0.0550 �2.601 0.0093

Note. Subsequences were coded as 1 for correct answer and 0 for incorrect answer.

Table 4

Mixed effects model of the influence of musical training and Kolmogorov complexity on prediction accuracy,

with participant, generative algorithm, and subsequence as random effects

Estimate SE z-value p-value

(Intercept) 0.4539 0.2221 2.044 0.0409

Kolmogorov complexity �0.2803 0.0998 �2.808 0.0050

Musical training 0.1470 0.0613 2.399 0.0165

Kolmogorov complexity 9 Musical training �0.1267 0.0551 �2.301 0.0214

Note. Subsequences were coded as 1 for correct answer and 0 for incorrect answer.
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and Povel (2000). More generally, our results fit within the growing body of research that

provides evidence that salient features of music can be captured by formal measures of

complexity (Cilibrasi et al., 2004; Essens, 1995; Fitch & Rosenfeld, 2007; Gomez et al.,

2007; Hansen & Pearce, 2012; Li & Sleep, 2004, 2005; Madsen & Widmer, 2006; Povel

& Essens, 1985; Shmulevich & Povel, 2000).

However, we only found low correlations between participants’ responses and excess

entropy, transient information, and Shannon entropy. Shannon entropy has previously

been found to capture the attention given to a specific melodic line in a piece of music

(Madsen & Widmer, 2006) or the uncertainty of probe tones in melodies (Hansen &

Pearce, 2012). In comparison with our findings, this might indicate that Shannon entropy

may be better suited for capturing the complexity of pitch sequences rather than rhythmic

sequences. It is worth remarking that Shannon entropy, H(1), is a function of a probabil-

ity distribution and, unlike the other measures considered here, is not sensitive to symbol

order. We would expect that a suitable measure of rhythm complexity should take into

account the relative positions of beats, and not just their probability distribution. The low

correlation between participants’ responses and excess entropy (which distinguishes

sequences of different periodicity) and transient information (which differentiates between

sequences of the same period) further indicates that rhythm complexity is perceived as a

departure from periodicity, no matter what the periodicity actually is (although sequences

of very long periodicity were not included in our study).

Our results also confirm the effect of musical expertise, as suggested by the main

effect of the “Musical Training” dimension of the Gold-MSI. “Musical Training” is

defined as the “extent of musical training and practice” and “degree of self-assessed

musicianship” (M€ullensiefen et al., 2014). The significant effect of musical training is

consistent with Schmidhuber’s (2009) theory, which states that the understanding of a

complex stimulus depends on the previous acquisition of strategies to understand similar

stimuli. This is also in agreement with the findings reported by Hansen and Pearce

(2012), North and Hargreaves (1995), and Vitz (1966) about the effects of musical abili-

ties on the perception of music complexity. Hansen and Pearce (2012) also found an

entropy-by-expertise interaction in their results. We identified a similar interaction

between musical training and both entropy rate and Kolmogorov complexity in the results

of the prediction task, which suggests that domain-specific expertise provides an advan-

tage when dealing with low-randomness stimuli, and becomes detrimental as randomness

increases.

As stated above, Kolmogorov complexity and entropy rate both essentially measure the

randomness of a sequence. Therefore, a possible interpretation of our results is that

sequences that are less random (e.g., rhythmic patterns with a short period length) are

easier to process because they can be processed within the limits of human working

memory capacity. The working memory model, as proposed by Baddeley and Hitch in

1974 (for a detailed description of auditory working memory, see also Baddeley & Logie,

1992), includes components that are relevant for musical processing. Lee (2004) found

evidence for the existence of a specific rhythmic component in working memory, and

Jerde, Childs, Handy, Nagode, and Pardo (2011) showed that working memory for
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rhythm activated different brain areas compared to passive listening of rhythms. Based on

these results, it is reasonable to assume that our experimental task of completing rhythmic

sequences could indeed be recruiting cognitive processes associated with working mem-

ory. This working memory interpretation of our results can also accommodate for the

modulatory effect of musical expertise, as there is evidence for increased working mem-

ory capacity due to domain-specific expertise (Chase & Ericsson, 1982), and for a rela-

tionship between auditory working memory abilities and the extent of musical training

(Bailey & Penhune, 2010).

This is one of the several possible interpretations of the connection between the model-

ing approach we introduced in this study and the participants’ mental representations

related to the judgment of rhythm complexity. The high correlation coefficients for both

Kolmogorov complexity and entropy rate on the prediction task suggest a linear relation-

ship between the randomness of a rhythmic sequence and the human ability to fully pro-

cess it. While the data from this experiment alone do not allow the identification of the

specific cognitive resources or mechanisms involved in such a relationship, the significant

interaction between musical training and the formal complexity measures in the mixed

effects models allows us to infer that the involved cognitive mechanisms can be modeled

more closely with formal complexity measures in the participants with higher musical

training. Possible explanations could therefore be related to increased working memory

capacity as discussed above, to more structured representations of distributions of transi-

tion probabilities for the elements of the auditory sequences, or to differences in atten-

tional patterns or in memorization of longer rhythmic patterns for instance. The precise

differences in cognitive processing could be investigated in subsequent research.

It is important to remember that the results of this study rely on certain modeling

assumptions. We assumed that prediction accuracy for the last beat of a sequence can

serve as a cognitively adequate measure of rhythm complexity. While this assumption is

debatable, it seems to receive at least some support by the correlation between prediction

accuracy and easiness judgments. Moreover, we assumed that complexity values as com-

puted by the five complexity measures are comparable when computed for large

sequences (infinite length complexity or over 107 symbols) and for shorter subsequences

(50 symbols). This is due to our choice of using some non-periodic sequences and to the

difficulty of defining complexity for short, non-periodic, but structured sequences. Finally,

we decided to use generative algorithms for the production of the rhythmic sequences in

order to obtain a large sample of experimental stimuli within a controlled parameter

space. Of course, even though these algorithmic sequences fit the definition of rhythm by

being “patterned configuration[s] of attacks that may or may not be constrained overall

by a meter or associated with a particular tempo” (Randel, 1986, p. 700), we are fully

aware of the fact that they probably lack ecological validity and are only remotely related

to rhythmic patterns from real music. However, having established the similar behavior

of entropy rate and Kolmogorov complexity compared to human judgments on this set of

artificially generated stimuli, an extension of this study could use rhythmic sequences

taken from existing music pieces and apply formal complexity measurements in a similar

way. A follow-up experiment should also revisit the effect of individual differences in
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general pattern recognition ability but should aim to avoid the ceiling effect on the

APM1 task, for example, by using the second and longer set of the Matrices.

Finally, we acknowledge that the esthetic experience of music certainly involves more

aspects than just the complexity of the stimulus, such as the ability to trigger emotions as

well as the effects of enculturation, semantic context, stylistic preferences, and many

more. However, the main findings of this study that Kolmogorov complexity and entropy

rate can suitably measure the perceived complexity of rhythmic patterns offers the possi-

bility to study the esthetic perception of rhythm in a rigorous and quantitative manner

which can contribute to our understanding of the cognitive processes that underpin the

judgment of beauty in music.
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Note

1. We used a sampled tom-tom recording uploaded by the user ‘quartertone’ on free-

sound, retrieved from http://www.freesound.org/people/quartertone/sounds/129946/
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